

Gems of Software Engineering Wisdom
34 years of IEEE Software history in 1000 quotes

Željko Obrenović

This book is for sale at http://leanpub.com/se-wisdom

This version was published on 2018-03-09

This is a Leanpub book. Leanpub empowers authors and publishers with
the Lean Publishing process. Lean Publishing is the act of publishing an
in-progress ebook using lightweight tools and many iterations to get
reader feedback, pivot until you have the right book and build traction
once you do.

© 2018 Željko Obrenović

http://leanpub.com/se-wisdom
http://leanpub.com/
http://leanpub.com/manifesto

Contents

Foreword . 1

1984 . 2

1985 . 16

1986 . 32

1987 . 52

1988 . 78

1989 . 98

1990 . 117

1991 . 140

1992 . 160

1993 . 189

1994 . 214

1995 . 242

1996 . 275

CONTENTS

1997 . 306

1998 . 337

1999 . 378

2000 . 412

2001 . 444

2002 . 477

2003 . 517

2004 . 560

2005 . 608

2006 . 655

2007 . 707

2008 . 762

2009 . 819

2010 . 871

2011 . 925

2012 . 971

2013 .1011

2014 .1072

2015 .1123

2016 .1166

CONTENTS

2017 .1238

2018 .1253

Foreword

This book contains a selection of 1000 quotes from IEEE Software1. IEEE

Software is a leading software engineering magazine with a very rich his-

tory. Since 1984, many of the leading software engineering professionals

have contributed to IEEE Software. The content is based on the material

from the IEEE Software history website2. Visit this site to find more details

about IEEE Software and its history.

Selected quotes are not intended to serve as a comprehensive overview

of the history of software engineering. Rather, the book is designed as a

“coffee table book”. It is intended for casual reading, offering interesting,

educative, thought-provoking, and sometimes controversial quotes.

Zeljko Obrenovic
1https://publications.computer.org/software-magazine/
2https://obren.info/ieeesw

https://publications.computer.org/software-magazine/
https://obren.info/ieeesw
https://publications.computer.org/software-magazine/
https://obren.info/ieeesw

1984

1984 3

1984 4

“Many of the challenges facing the software industry today

are a direct result of our insatiable appetite for new

computer-based systems applications. Others confront us

simply because we have not managed to successfully solve a

large number of problems that we ourselves created many

years ago.”

Bruce D. Shriver, From the Editor-in-Chief, IEEE Software,

January 1984.3

3DOI: 10.1109/MS.1984.233385

http://doi.ieeecomputersociety.org/10.1109/MS.1984.233385

1984 5

“There probably isn’t a best way to build the system or even a

major part of it. Much more important is to avoid choosing a

terrible way and to have a clear division of responsibilities

among the parts.”

Butler W. Lampson, Hints for Computer System Design, IEEE

Software, January 1984.4

4DOI: 10.1109/MS.1984.233391

http://doi.ieeecomputersociety.org/10.1109/MS.1984.233391

1984 6

“Designing a computer system is very different from

designing an algorithm: … the requirement - is less precisely

defined more complex, and more subject to change; the

system has much more internal structure - hence, many

internal interfaces; and the measure of success is much less

clear. The designer usually finds himself flondering in a sea of

possibilities, unclear about how one choice will limit his

freedom to take other choices or affect the size and

performance of the entire-system.”

Butler W. Lampson, Hints for Computer System Design, IEEE

Software, January 1984.5

5DOI: 10.1109/MS.1984.233391

http://doi.ieeecomputersociety.org/10.1109/MS.1984.233391

1984 7

“Booch offers a software design methodology, which he calls

‘object-oriented design’ in contrast to earlier popular

methods he designates as either functional or data-oriented.

In contrast to suggestions that we either identify a program’s

principal function and describe it in the top box in a hierarchy

chart or carefully identify the patterns of data and their flows,

Booch suggests, ‘Define the problem, develop an informal

strategy; formalize the strategy.’”

Peter G. Anderson, Review of Grady Booch’s book ‘Software

Engineering with Ada’, IEEE Software, January 1984.6

6DOI: 10.1109/MS.1984.233391

http://doi.ieeecomputersociety.org/10.1109/MS.1984.233391

1984 8

1984 9

“One does not use structural engineering analysis to build a

sandcastle. But neither does one choose the prize-winning

builder of sandcastles as architect for a tower block of offices

in a city.”

Sir Charles Antony Richard Hoare, Programming: Sorcery or

Science?, IEEE Software, April 1984.7

7DOI: 10.1109/MS.1984.234042

http://doi.ieeecomputersociety.org/10.1109/MS.1984.234042

1984 10

“I believe that in our branch of engineering, above all others,

the academic ideals of rigor and elegance will pay the

highest dividends in practical terms of reducing costs,

increasing performance, and in directing the great sources of

computational power on the surface of a silicon chip to the

use and convenience of man.”

Sir Charles Antony Richard Hoare, Programming: Sorcery or

Science?, IEEE Software, April 1984.8

8DOI: 10.1109/MS.1984.234042

http://doi.ieeecomputersociety.org/10.1109/MS.1984.234042

1984 11

1984 12

“The greater speed of technical change means that capital

investment must be recovered more quickly and that

enhancement and evolution consume proportionately more

resources than in a slowly changing technology. This

contributes to the fact that maintenance and enhancement

are the dominant costs in the software life cycle today.”

Peter Wegner, Capital-Intensive Software Technology, IEEE

Software, July 1984.9

9DOI: 10.1109/MS.1984.234384

http://doi.ieeecomputersociety.org/10.1109/MS.1984.234384

1984 13

“Periods of rapid technological change require more

innovation and greater risks than periods of stability.”

Peter Wegner, Capital-Intensive Software Technology

Conclusion, IEEE Software, July 1984.10

10DOI: 10.1109/MS.1984.234706

http://doi.ieeecomputersociety.org/10.1109/MS.1984.234706

1984 14

1984 15

“An abstraction is a simplified description, or specification, of

a system that emphasizes some of the system’s details or

properties while suppressing others. A good abstraction is

one that emphasizes details that are significant to the reader

or user and suppresses details that are, at least for the

moment immaterial or diversionary.”

Mary Shaw, Abstraction Techniques in Modern Programming

Languages, IEEE Software, October 1984.11

11DOI: 10.1109/MS.1984.234384

http://doi.ieeecomputersociety.org/10.1109/MS.1984.234384

1985

1985 17

1985 18

“The use of formal notation does not, however, preclude that

of natural language. In fact, mathematical specification of a

problem usually leads to a better natural-language

description. This is because formal notations naturally lead

the specifier to raise some questions that might have

remained unasked, and thus unanswered, in an informal

approach.”

Bertrand Meyer, On Formalism in Specifications, IEEE

Software, January 1985.12

12DOI: 10.1109/MS.1985.229776

http://doi.ieeecomputersociety.org/10.1109/MS.1985.229776

1985 19

1985 20

“In essence, programming-in-the large involves the two

complementary activities of modularization and interface

control. Modularization is the identification of the major

system modules and the entities those modules contain,

where entities are language elements that are given names,

such as subprograms, data objects, and types. Interface

control is the specification and control of the interactions

among entities in different modules.”

Alexander L. Wolf, Lori A. Clarke, Jack C. Wileden, Ada-Based

support for programming-in-the-Large, IEEE Software, March

1985.13

13DOI: 10.1109/MS.1985.230352

http://doi.ieeecomputersociety.org/10.1109/MS.1985.230352

1985 21

“Engineers may be able to design a better interface if they

take into account the control structures underlying the

interface syntax.The syntactic, semantic, and protocol

aspects of the interface each have their own ‘complexity.’.”

T.E. Lindquist, Assessing the Usability of Human-Computer

Interfaces, IEEE Software, March 1985.14

14DOI: 10.1109/MS.1985.230052

http://doi.ieeecomputersociety.org/10.1109/MS.1985.230052

1985 22

1985 23

“The lack of a complete theoretical basis for distributed

computing systems need not inhibit the development of useful

systems. Even without such a basis, many technical advances

have been made by individuals, who then share them with

others, who in turn accept useful concepts and add further

innovations.”

Stephen F. Lundstrom, Duncan H. Lawrie, Experiences with

Distributed Systems, IEEE Software, May 1985.15

15DOI: 10.1109/MS.1985.230692

http://doi.ieeecomputersociety.org/10.1109/MS.1985.230692

1985 24

1985 25

“System designers should provide for such practical issues as

deadlock avoidance, scheduling, necessary and sufficient

primitives to allow for synchronization, and the combination

of multiprogramming (a single system dividing its time and

resources among many jobs) and multiprocessing (multiple

processing units operating on a single job).”

Joanne L. Martin, Operating Systems and Environments for

Large-Scale Parallel Processors, IEEE Software, July 1985.16

16DOI: 10.1109/MS.1985.231051

http://doi.ieeecomputersociety.org/10.1109/MS.1985.231051

1985 26

1985 27

“Program testing consists of scattered collection of rules of

thumb, coverage measures, and testing philosophies.”

William E. Howden, The Theory and Practice of Foundation

Testing, IEEE Software, September 1985.17

17DOI: 10.1109/MS.1985.231754

http://doi.ieeecomputersociety.org/10.1109/MS.1985.231754

1985 28

“Today we tend to go on for years, with tremendous effort to

find that the system, which was not well understood to start

with, does not work as anticipated. We build systems like the

Wright brothers built airplanes-build the whole thing, push it

off the cliff, let it crash, and start over again.”

William E. Howden, The Theory and Practice of Foundation

Testing, IEEE Software, September 1985.18

18DOI: 10.1109/MS.1985.231754

http://doi.ieeecomputersociety.org/10.1109/MS.1985.231754

1985 29

“When programs rather than humans create products, the

issue of product ownership create thorny legal problems

which the law has yet to address.”

Michael C. Gemignani, Who Owns What Sofware Produces?,

IEEE Software, September 1985.19

19DOI: https://doi.org/10.1109/MS.1985.231758

https://doi.org/10.1109/MS.1985.231758

1985 30

1985 31

“The SEI Software Engineering Institute has established its

long-range goal: Transition new software engineering

technology into routine common practice to achieve

significant improvements in the ability of software developers

and maintainers to produce and support predictably high

quality systems.”

M.R. Barbacci, Mary Shaw, The Software Engineering

Institute: Bridging Practice and Potential, IEEE Software,

November 1985.20

20DOI: 10.1109/MS.1985.232064

http://doi.ieeecomputersociety.org/10.1109/MS.1985.232064

1986

1986 33

1986 34

“Multiparadigm systems incorporating two or more of the

conventional program paradigms. For example, the Loops

system … combines features of the Lisp, functional,

rule-oriented, and object-oriented paradigms.”

Brent Hailpern, Guest Editor’s Introduction Multiparadigm

Languages and Environments, IEEE Software, January

1986.21

21DOI: 10.1109/MS.1986.232426

http://doi.ieeecomputersociety.org/10.1109/MS.1986.232426

1986 35

“The C++ programming language was designed to make the

task of programming more enjoyable for the serious

programmer.”

Bjarne Stroustrup, Multiparadigm Research: A Survey of Nine

Projects, IEEE Software, January 1986.22

22DOI: 10.1109/MS.1986.232757

http://doi.ieeecomputersociety.org/10.1109/MS.1986.232757

1986 36

1986 37

“Knowledge-based expert systems provide a programming

methodology for solving ill-structured engineering

problems. … these systems also provide a flexible software

development methodology-by separating the knowledge

base from the inference mechanism…”

Duvvuru Sriram, Michael D. Rychener, Knowledge-Based

Expert Systems for Engineering, IEEE Software, March 1986.23

23DOI: 10.1109/MS.1986.232780

http://doi.ieeecomputersociety.org/10.1109/MS.1986.232780

1986 38

“Empirically comparing structural test coverage metrics

reveals that test sets that satisfy one metric are likely to

satisfy another metric as well.”

M.D. Weiser, J.D. Gannon, P.R. McMullin, Comparison of

Structural Test Coverage Metrics, IEEE Software, March

1986.24

24DOI: http://dx.doi.org/10.1109/MS.1985.230356

http://dx.doi.org/10.1109/MS.1985.230356

1986 39

1986 40

“Arguing about the definition of software maintenance

seldom leads to maintenance advances…”

Robert S. Arnold, Roger J. Martin, Software Maintenance, IEEE

Software, May 1986.25

25DOI: 10.1109/MS.1986.233403

http://doi.ieeecomputersociety.org/10.1109/MS.1986.233403

1986 41

“User interfaces in the software environment are much like

spices in good recipes; the right arrangement must be found

or the food will not show its full flavor. Factors such as data

availability and complexity and the size of the display must be

carefully weighed and accounted for in the design of any

software environment.”

Ben Shneiderman, Philip Shafer, Roland Simon, Linda Weldon,

Display Strategies for Program Browsing: Concepts and

Experiment, IEEE Software, May 1986.26

26DOI: 10.1109/MS.1986.233405

http://doi.ieeecomputersociety.org/10.1109/MS.1986.233405

1986 42

“One of the major challenges facing project software system

managers and maintainers in the 1980’s is how to upgrade

large, complex, embedded system, written a decade or more

ago in unstructured languages according to designs that

make modification difficult.”

Robert N. Britcher, James J. Craig, Using Modem Design

Practices to Upgrade Aging Software Systems, IEEE Software,

May 1986.27

27DOI: 10.1109/MS.1986.233407

http://doi.ieeecomputersociety.org/10.1109/MS.1986.233407

1986 43

1986 44

“Computer science consists of at least three worlds -

software, hardware and firmware. The world of firmware,

developed to reduce the semantic gap between hardware

and software, has multiple levels and intricacies, symmetries

and quasi-symmetriess.”

Henry Ayling, Escher: The Image of the Artist, IEEE Software,

July 1986.28

28DOI: 10.1109/MS.1986.233745

http://doi.ieeecomputersociety.org/10.1109/MS.1986.233745

1986 45

“We chose IEEE Software as our forum because firmware

engineering involves transferring theory, principle, and

technique from software to firmware, with appropriate

adaptations.”

Subrata Dasgupta, Robert A. Mueller, Firmware Engineering:

The Interaction of Microprogramming and Software

Technology, IEEE Software, July 1986.29

29DOI: 10.1109/MS.1986.233747

http://doi.ieeecomputersociety.org/10.1109/MS.1986.233747

1986 46

1986 47

“Windows serve as the conceptual framework for the

capture, development, organization, and highlighting of

information - both textual and graphic. Attention to pure

aesthetics is an important issue in making display interfaces

understandable, memorable, and appealing to users.

Consequently, window aesthetics are a factor in user

satisfaction.”

Jason Gait, Pretty Pane Tiling of Pretty Windows, IEEE

Software, September 1986.30

30DOI: 10.1109/MS.1986.229469

http://doi.ieeecomputersociety.org/10.1109/MS.1986.229469

1986 48

“For every piece of business software sold, at least one illegal

copy exists.”

Paul A. Suhler, Nadar Bagherzadeh, Miroslaw Malek, Neil Iscoe,

Software Authorization Systems, IEEE Software, September

1986.31

31DOI: 10.1109/MS.1986.234396

http://doi.ieeecomputersociety.org/10.1109/MS.1986.234396

1986 49

1986 50

“Modula-2 has been adopted as the foundation for a number

of experimental systems. The insights gained from those

experiments will prove valuable to both current designers and

future users of programming systems, no matter what the

language. “

Robert P. Cook, Modula-2 Experiments Will Help Future

Language Designs, IEEE Software, November 1986.32

32DOI: 10.1109/MS.1986.234419

http://doi.ieeecomputersociety.org/10.1109/MS.1986.234419

1986 51

“Dijkstra’s proposal to prohibit the GOTO was greeted with

controversy: ‘You must be kidding!’”

Harlan D. Mills, Structured Programming: Retrospect and

Prospect, IEEE Software, November 1986.33

33DOI: 10.1109/MS.1986.229478

http://doi.ieeecomputersociety.org/10.1109/MS.1986.229478

1987

1987 53

1987 54

“Reusing and reworking software is not new; it has been done

since the very beginnings of our industry in the early 1950s.

Reuse means using an entity in a different context from that in

it initially had been used. This is often called ‘black-box’

reuse. When an entity is modified before it is used in the new

setting, it is called ‘rework’ or ‘white-box’ reuse.”

Bruce D. Shriver, Editor in Chief Introduction Reuse Revisited,

IEEE Software, January 1987.34

34DOI: 10.1109/MS.1987.229788

http://doi.ieeecomputersociety.org/10.1109/MS.1987.229788

1987 55

“To reuse a software component, you first have to find it.”

Ruber Prieto-Diaz, Peter Freeman, Clasifying Software for

Reusability, IEEE Software, January 1987.35

35DOI: 10.1109/MS.1987.229789

http://doi.ieeecomputersociety.org/10.1109/MS.1987.229789

1987 56

“There are two levels of reuse to consider: the reuse of ideas

and knowledge and the reuse of particular artifacts and

components.”

Ruber Prieto-Diaz, Peter Freeman, Clasifying Software for

Reusability, IEEE Software, January 1987.36

36DOI: 10.1109/MS.1987.229789

http://doi.ieeecomputersociety.org/10.1109/MS.1987.229789

1987 57

“Visual programming languages… deal with objects that do

not have an inherent visual representation. This includes

traditional data types such as arrays, stacks, and queues and

application data types such as forms, documents, and

databases. … both programming constructs and and the rules

to combine these constructs should be presented visually.”

Shi-Kuo Chang, Visual Languages: A Tutorial and Survey,

IEEE Software, January 1987.37

37DOI: 10.1109/MS.1987.229792

http://doi.ieeecomputersociety.org/10.1109/MS.1987.229792

1987 58

“ABC is being designed and implemented with an integrated

programming environment. … The main design objectives …

: simplicity, suitability for interactive use, and availability of

tools for structured programming.”

Steven Pemberton, An Alternative Simple Language and

Environment for PCs, IEEE Software, January 1987.38

38DOI: 10.1109/MS.1987.229797

http://doi.ieeecomputersociety.org/10.1109/MS.1987.229797

1987 59

1987 60

“New technology is changing the way we store documents.

This experimental system features flexible document

retrieval, a distributed architecture, and the capacity to store

many very large documents.”

Simon Gibbs, Dennis Tsichritzis, Akis Fitas, Dimitri Konstantas,

Yiannis Yeorgaroudakis, Muse: A Multimedia File System, IEEE

Software, March 1987.39

39DOI: 10.1109/MS.1987.230090

http://doi.ieeecomputersociety.org/10.1109/MS.1987.230090

1987 61

“Simply being more organized will not make the reuse

problem go away. The issues are technical, not managerial.

The answers lie in object-oriented design.”

Bertrand Meyer, Reusability: The Case for Object-Oriented

Design, IEEE Software, March 1987.40

40DOI: 10.1109/MS.1987.230097

http://doi.ieeecomputersociety.org/10.1109/MS.1987.230097

1987 62

1987 63

“Testing Ada programs is easier with this visual debugger

that graphically depicts what the program as doing - and how

it is being done.”

Sadahiro Isoda, Yuji Ono, Takao Shimomura, VIPS: A Visual

Debugger, IEEE Software, May 1987.41

41DOI: 10.1109/MS.1987.230394

http://doi.ieeecomputersociety.org/10.1109/MS.1987.230394

1987 64

“No one likes to debug programs, and there is no way to

automate the task.”

R.E. Seviora, Knowledge-Based Program Debugging Systems,

IEEE Software, May 1987.42

42DOI: 10.1109/MS.1987.230396

http://doi.ieeecomputersociety.org/10.1109/MS.1987.230396

1987 65

“The term debugging was first applied to a hardware bug - a

moth in the circuitry of Mark II”

R.E. Seviora, Knowledge-Based Program Debugging Systems,

IEEE Software, May 1987.43

43DOI: 10.1109/MS.1987.230396

http://doi.ieeecomputersociety.org/10.1109/MS.1987.230396

1987 66

“Smalltalk promotes fearless programming.”

Jim Diederich, Jack Milton, Experimental Prototyping in

Smalltalk, IEEE Software, May 1987.44

44DOI: 10.1109/MS.1987.230707

http://doi.ieeecomputersociety.org/10.1109/MS.1987.230707

1987 67

1987 68

“People are leery about buying a used car for many of the

same reasons programmers are reluctant to reuse someone

else’s work.”

Will Tracz, Reusability Comes of Age, IEEE Software, July

1987.45

45DOI: 10.1109/MS.1987.231056

http://doi.ieeecomputersociety.org/10.1109/MS.1987.231056

1987 69

“An experiment asked programmers untrained in reuse to

evaluate component reusability. They did poorly.”

D.W. Embley, S.N. Woodfield, D.T. Scott, Can Programmers

Reuse Software?, IEEE Software, July 1987.46

46DOI: 10.1109/MS.1987.231064

http://doi.ieeecomputersociety.org/10.1109/MS.1987.231064

1987 70

1987 71

“Software quality can be engineered under statistical quality

control and delivered with better quality.”

R.C. Linger, M. Dyer, H.D. Mills, Cleanroom Software

Engineering, IEEE Software, September 1987.47

47DOI: 10.1109/MS.1987.231413

http://doi.ieeecomputersociety.org/10.1109/MS.1987.231413

1987 72

“SQA will evolve into a broader software quality technology,

shifting from a passive process to an active one, from fault

detection to fault avoidance.”

F.S. LaMonica, J.P. Cavano, Quality Assurance in Future

Development Environments, IEEE Software, September

1987.48

48DOI: 10.1109/MS.1987.231415

http://doi.ieeecomputersociety.org/10.1109/MS.1987.231415

1987 73

“An effective way to improve software quality is to set

measurable goals and then manage your projects to achieve

those goals. Hewlett-Packard has developed some methods to

do just that.”

R.B. Grady, Measuring and Managing Software Maintenance,

IEEE Software, September 1987.49

49DOI: 10.1109/MS.1987.231417

http://doi.ieeecomputersociety.org/10.1109/MS.1987.231417

1987 74

“Maintenance plays a vital role in protecting quality as a

system evolves.”

J.J. Buck, J.S. Collofello, Software Quality Assurance for

Maintenance, IEEE Software, September 1987.50

50DOI: 10.1109/MS.1987.231418

http://doi.ieeecomputersociety.org/10.1109/MS.1987.231418

1987 75

1987 76

“How do you keep teams of programmers informed of system

changes without burying them in mail messages? Make the

environment responsible for propagating changes.”

S.M. Kaplan, J. Micallef, G.E. Kaiser, Multiuser, Distributed

Language-Based Environments, IEEE Software, November

1987.51

51DOI: 10.1109/MS.1987.232092

http://doi.ieeecomputersociety.org/10.1109/MS.1987.232092

1987 77

“A new generation of operating system, based on extended

databases, will supplant the original phase-sequencing and

current pipelining program composition mechanisms.”

R.M. Baizer, Living in the Next-Generation Operating System,

IEEE Software, November 1987.52

52DOI: 10.1109/MS.1987.232097

http://doi.ieeecomputersociety.org/10.1109/MS.1987.232097

1988

1988 79

1988 80

“Parallel programming challenges software professionals to

rethink old approaches and difficult - often controversial -

choices.”

Shreekant S. Thakkar, Guest Editor’s Introduction: Parallel

Programming—Issues and Questions, IEEE Software, January

1988.53

53DOI: 10.1109/MS.1988.10003

http://doi.ieeecomputersociety.org/10.1109/MS.1988.10003

1988 81

“Parafunctional programming is based on the premise that

the what (specification) and the how (implementation) are

separately identifiable and maintainable system components.”

Paul Hudak, Exploring Parafunctional Programming:

Separating the What from the How, IEEE Software, January

1988.54

54DOI: 10.1109/52.1994

http://doi.ieeecomputersociety.org/10.1109/52.1994

1988 82

“The IOGen static-analysis tool… uses a technique based on

symbolic execution and produces a set of I/O pairs that

represent execution paths through a program.”

Joyce R. Jenkins, Timothy E. Lindquist, Test-Case Generation

with IOGen, IEEE Software, January 1988.55

55DOI: 10.1109/52.1996

http://doi.ieeecomputersociety.org/10.1109/52.1996

1988 83

1988 84

“Mote than a decade after its introduction, CASE is emerging

as a real-world technology whose promises are being

fulfilled.”

Elliot J. Chikofsky, Guest Editor’s Introduction: Software

Technology People Can Really Use, IEEE Software, March

1988.56

56DOI: 10.1109/MS.1988.10019

http://doi.ieeecomputersociety.org/10.1109/MS.1988.10019

1988 85

“Current computer-aided-software engineering (CASE) tools

have several inherent limitations that reduce the productivity

gains they can achieve … methodology constraints,

administration difficulties, documentation inadequacies, and

graphic-artist requirement.”

Charles F. Martin, Second-Generation CASE Tools: A

Challenge to Vendors, IEEE Software, March 1988.57

57DOI: 10.1109/52.2010

http://doi.ieeecomputersociety.org/10.1109/52.2010

1988 86

“Today tools help systems analysts, so why aren’t they widely

used? “

Charles F. Martin, Second-Generation CASE Tools: A

Challenge to Vendors, IEEE Software, March 1988.58

58DOI: 10.1109/52.2010

http://doi.ieeecomputersociety.org/10.1109/52.2010

1988 87

“A software-process maturity framework… has been

developed to provide the US Department of Defense with a

means to characterize the capabilities of

software-development organizations. This

software-development process-maturity model reasonably

represents the actual ways in which software-development

organizations improve. It provides a framework for assessing

these organizations and identifying the priority areas for

immediate improvement. It also helps identify those places

where advanced technology can be most valuable in

improving the software-development process.”

Watts S. Humphrey, Characterizing the Software Process: A

Maturity Framework, IEEE Software, March 1988.59

59DOI: 10.1109/52.2014

http://doi.ieeecomputersociety.org/10.1109/52.2014

1988 88

“There are several applications where a universal-relation

interface to an existing database-management system is

essential. The most obvious example is natural-language

interface - indeed, it is hard to see how a natural-language

interface could reliably use anything else, since it is

unreasonable to make the user talk in terms of the database’s

logical structure.”

Moshe Y. Vardi, The Universal-Relation Data Model for Logical

Independence, IEEE Software, March 1988.60

60DOI: 10.1109/52.2015

http://doi.ieeecomputersociety.org/10.1109/52.2015

1988 89

1988 90

“The meaning of the term ‘object oriented’ is examined in the

context of the general-purpose programming language C++.

This choice is made partly to introduce C++ and partly

because C++ is one of the few languages that supports data

abstraction, object-oriented programming, and traditional

programming techniques. … four paradigms are examined:

procedural, data hiding, data abstraction, and

object-oriented programming.”

Bjarne Stroustrup, What Is Object-Oriented Programming?,

IEEE Software, May 1988.61

61DOI: 10.1109/52.2020

http://doi.ieeecomputersociety.org/10.1109/52.2020

1988 91

1988 92

“Even though the code sizes were smaller with both

fourth-generation tools, Cobol was clearly superior in

performance.”

Paul J. Jalics, Santosh K. Misra, Third-Generation Versus

Fourth-Generation Software Development, IEEE Software,

July 1988.62

62DOI: 10.1109/52.17797

http://doi.ieeecomputersociety.org/10.1109/52.17797

1988 93

1988 94

“Shared memory requires carefully designed concurrency

control, but the traditional approach, which is to embed the

entire allocate-release implementation code in critical

sections, is unsuitable for real-time applications because it

results in excessively high response time.”

Ray Ford, Concurrent Algorithms for Real-Time Memory

Management, IEEE Software, September 1988.63

63DOI: 10.1109/52.7940

http://doi.ieeecomputersociety.org/10.1109/52.7940

1988 95

1988 96

“Expert systems attempt to clone an expert’s problem-solving

behavior in a particular knowledge-intensive domain. An

expert’s domain knowledge encompasses both the facts that

apply to a particular area and the knowledge of how and

when to use these facts to solve a problem in that domain. “

Murat M. Tanik, Raymond T. Yeh, Guest Editors’ Introduction:

Expert Systems, IEEE Software, November 1988.64

64DOI: 10.1109/MS.1988.10052

http://doi.ieeecomputersociety.org/10.1109/MS.1988.10052

1988 97

“It is far better to succeed by design than by default or

chance. Usability testing tips the balance in favor of success

and reduces the risks associated with launching a new

system.”

Kathleen Potosnak, Recipe for a Usability Test, IEEE Software,

November 1988.65

65DOI: 10.1109/MS.1988.10054

http://doi.ieeecomputersociety.org/10.1109/MS.1988.10054

1989

1989 99

1989 100

“An interactive system - one with a human-computer

interface - is not judged solely on its ability to compute. It is

also judged on its ability to communicate. In fact, if users

cannot communicate effectively with an interactive system, its

computational ability may be inaccessible. “

Deborah Hix, Guest Editor’s Introduction: User

Interfaces—Opening a Window on the Computer, IEEE

Software, January 1989.66

66DOI: 10.1109/MS.1989.10004

http://doi.ieeecomputersociety.org/10.1109/MS.1989.10004

1989 101

“An overview is given of user-interface development systems

(UIDS). … The three types are language-based, graphical,

and automatic creation interfaces.”

Brad A. Myers, User-Interface Tools: Introduction and

Survey, IEEE Software, January 1989.67

67DOI: 10.1109/52.16898

http://doi.ieeecomputersociety.org/10.1109/52.16898

1989 102

1989 103

“Japan’s Sigma (Software Industrialized Generator and

Maintenance Aids) … consists of the Sigma Center, Sigma

network, and Sigma user sites. The Sigma Center will help

users who are constructing development environments of

programs using those environments. It will provide database

services, demonstration services, and part of the network

service.”

Noboru Akima, Fusatake Ooi, Industrializing Software

Development: A Japanese Approach, IEEE Software, March

1989.68

68DOI: 10.1109/52.23125

http://doi.ieeecomputersociety.org/10.1109/52.23125

1989 104

“With strong government backing and direction, Singapore

seeks to develop information technology as a growth industry

and use it to promote the nation’s global competitiveness.”

Tahn Joo Chin, Kai Yuen Wang, Software Technology

Development in Singapore, IEEE Software, March 1989.69

69DOI: 10.1109/52.23132

http://doi.ieeecomputersociety.org/10.1109/52.23132

1989 105

1989 106

“Properly applied throughout the life cycle, verification and

validation can result in higher quality, more reliable

programms.”

Dolores R. Wallace, Roger U. Fujii, Software Verification and

Validation: An Overview, IEEE Software, May 1989.70

70DOI: 10.1109/52.28119

http://doi.ieeecomputersociety.org/10.1109/52.28119

1989 107

“System testing becomess guesswork - unless you set it up to

apply statistical analysis. Then you can focus attention on the

software’s use instead of its structure.”

A. Frank Ackerman, John D. Musa, Quantifying Software

Validation: When to Stop Testing?, IEEE Software, May

1989.71

71DOI: 10.1109/52.28120

http://doi.ieeecomputersociety.org/10.1109/52.28120

1989 108

“Inspections can detect and eliminate faults more cheaply

than testing.”

A. Frank Ackerman, Lynne S. Buchwald, Frank H. Lewski,

Software Inspections: An Effective Verification Process, IEEE

Software, May 1989.72

72DOI: 10.1109/52.28121

http://doi.ieeecomputersociety.org/10.1109/52.28121

1989 109

1989 110

“The commercial availability of these machines poses a

challenge to the software industry. What is the best way to

harness the power?”

Shreekant Thakkar, Guest Editor’s Introduction: Parallel

Programming—Harnessing the Hardware, IEEE Software, July

1989.73

73DOI: 10.1109/MS.1989.10037

http://doi.ieeecomputersociety.org/10.1109/MS.1989.10037

1989 111

“A strong common theme among the managers interviewed

was the person’s ability to communicate with both peers and

managers … Most of the managers are looking for someone

who will be a good team player - someone who can work for

the good of the group and apply his skills and talents to assist

collective goals. … I look for someone I can motivate and

who wants to be motivated…”

Elliot Chikofsky, Looking For the Best Software Engineers,

IEEE Software, July 1989.74

74DOI: https://doi.ieeecomputersociety.org/10.1109/52.31661

https://doi.ieeecomputersociety.org/10.1109/52.31661

1989 112

1989 113

“Multiparadigm programming makes it possible to match the

paradigm to the problem.”

Pamela Zave, A Compositional Approach to Multiparadigm

Programming, IEEE Software, September 1989.75

75DOI: 10.1109/52.35586

http://doi.ieeecomputersociety.org/10.1109/52.35586

1989 114

“The language-independent Law of Demeter… encodes the

ideas of encapsulation and modularity in an easy-to-follow

form for object-oriented programmers … The law was

developed during the design and implementation of the

Demeter system, which provides a high-level interface to

class-based, object-oriented systems.”

Ian M. Holland, Karl J. Lieberherr, Assuring Good Style for

Object-Oriented Programs, IEEE Software, September 1989.76

76DOI: 10.1109/52.35588

http://doi.ieeecomputersociety.org/10.1109/52.35588

1989 115

1989 116

“The European Strategic Program for Research and

Information Technology ESPRIT has had a profound effect on

industrial technology in Europe.”

Annie Kuntzmann-Combelles, Guest Editor’s Introduction:

ESPRIT—Key Results of the First Phase, IEEE Software,

November 1989.77

77DOI: 10.1109/MS.1989.10064

http://doi.ieeecomputersociety.org/10.1109/MS.1989.10064

1990

1990 118

1990 119

“Reverse engineering is the process of analyzing a subject

system to identify the system’s components and their

interrelationships and create representations of the system in

another form or at a higher level of abstraction.”

Elliot J. Chikofsky, James H. Cross II, Reverse Engineering and

Design Recovery: A Taxonomy, IEEE Software, January

1990.78

78DOI: 10.1109/52.43044

http://doi.ieeecomputersociety.org/10.1109/52.43044

1990 120

“Restructuring is the transformation from one representation

form to another at the same relative abstraction level, while

preserving the subject system’s external behavior

(functionality and semantics). “

Elliot J. Chikofsky, James H. Cross II, Reverse Engineering and

Design Recovery: A Taxonomy, IEEE Software, January

1990.79

79DOI: 10.1109/52.43044

http://doi.ieeecomputersociety.org/10.1109/52.43044

1990 121

1990 122

“You can’t control what you can’t measure. That fundamental

reality underlies the importance of software metrics, despite

the controversy that has surrounded them since Maurice

Halstead put forth his idea of software science. Sketpics claim

metrics are useless and expensive exercise in pointless data

collection, while proponents argue they are valuable

management and engineering tools.”

Peter B. Dyson, Harlan D. Mills, Guest Editors’ Introduction:

Using Metrics to Quantify Development, IEEE Software, March

1990.80

80DOI: 10.1109/MS.1990.10016

http://doi.ieeecomputersociety.org/10.1109/MS.1990.10016

1990 123

“Measurement must be applied in individual experiments or

case studies; … measurement can help continuously improve

an organization’s state of the practice; … measurement

requires automated support.”

H. Dieter Rombach, Design Measurement: Some Lessons

Learned, IEEE Software, March 1990.81

81DOI: 10.1109/52.50770

http://doi.ieeecomputersociety.org/10.1109/52.50770

1990 124

1990 125

“Practitioners drift one way, purists the other. The purists

must compromise.”

Carl Chang, Let’s Stop the Bipolar Drift, IEEE Software, May

1990.82

82DOI: 10.1109/MS.1990.10029

http://doi.ieeecomputersociety.org/10.1109/MS.1990.10029

1990 126

“Tools are divided into vertical and horizontal architectures.

Vertical tools support specific activities in a single life-cycle

phase, such as analysis, design, or testing. Horizontal tools

support activities across the entire life cycle, such as project

management and cost estimation.”

Paul W. Oman, Dennis B. Smith, Software Tools in Context,

IEEE Software, May 1990.83

83DOI: 10.1109/52.55222

http://doi.ieeecomputersociety.org/10.1109/52.55222

1990 127

“Performance tools are a way of making systematic the work

needed to carry out performance studies so that several

studies can be carried out more easily and be compared in a

consistent way.”

Kathleen D. Nichols, Performance Tools, IEEE Software, May

1990.84

84DOI: 10.1109/52.55223

http://doi.ieeecomputersociety.org/10.1109/52.55223

1990 128

“Three approaches to user-interface development: tool kits,

user-interface management systems (UIMS), and interactive

design tools.”

Ed Lee, User-Interface Development Tools, IEEE Software,

May 1990.85

85DOI: 10.1109/52.55225

http://doi.ieeecomputersociety.org/10.1109/52.55225

1990 129

“Some testing tools simulate the final execution environment

as a way of expediting test execution, others automate the

development of test plans, and still others collect

performance data during execution.”

Mike Lutz, Testing Tools, IEEE Software, May 1990.86

86DOI: 10.1109/52.55228

http://doi.ieeecomputersociety.org/10.1109/52.55228

1990 130

“Code generators… take a programmer’s inputs in the form

of some abstraction, design, or direct interaction with the

system and write out a source program that implements the

details of the application…”

Ted Lewis, Code Generators, IEEE Software, May 1990.87

87DOI: 10.1109/52.55230

http://doi.ieeecomputersociety.org/10.1109/52.55230

1990 131

1990 132

“An environment for creating user interfaces for embedded

systems, called the graphical specification system (GSS) …

combines graphical and minimal low-level textual

specification with a prototyping capability for rapid

user-interface design and evaluation.”

Sallie Sheppard, Andrew Harbert, William Lively, A Graphical

Specification System for User-Interface Design, IEEE

Software, July 1990.88

88DOI: 10.1109/52.56446

http://doi.ieeecomputersociety.org/10.1109/52.56446

1990 133

“The interpretive frame system (IFS), a tool for building

application systems … separates high-level design and

user-interface programming from domain-specific

programming.”

Kiem-Phong Vo, IFS: A Tool to Build Application Systems, IEEE

Software, July 1990.89

89DOI: 10.1109/52.56448

http://doi.ieeecomputersociety.org/10.1109/52.56448

1990 134

1990 135

“Seven widely held conceptions about formal methods are

challenged. These beliefs are variants of the following: formal

methods can guarantee that software is perfect; they work by

proving that the programs are correct; only highly critical

systems benefit from their use; they involve complex

mathematics; they increase the cost of development; they

are incomprehensible to clients; and nobody uses them for

real projects.”

Anthony Hall, Seven Myths of Formal Methods, IEEE Software,

September 1990.90

90DOI: 10.1109/52.57887

http://doi.ieeecomputersociety.org/10.1109/52.57887

1990 136

1990 137

“Five basic steps that the software engineering profession

must take to become a true engineering discipline … are:

understanding the nature of expertise, recognizing different

ways to get information, encouraging routine practice,

expecting professional specializations, and improving the

coupling between science and commercial practice.”

Mary Shaw, Prospects for an Engineering Discipline of

Software, IEEE Software, November 1990.91

91DOI: 10.1109/52.60586

http://doi.ieeecomputersociety.org/10.1109/52.60586

1990 138

“Cleanroom engineering achieves intellectual control by

applying rigorous, mathematics-based engineering practices,

establishes an errors-are-unacceptable attitude and a team

responsibility for quality, delegates development and testing

responsibilities to separate teams, and certifies the software’s

mean time to failure through the application of statistical

quality-control methods.”

Harlan D. Mills, Richard H. Cobb, Engineering Software Under

Statistical Quality Control, IEEE Software, November 1990.92

92DOI: 10.1109/52.60601

http://doi.ieeecomputersociety.org/10.1109/52.60601

1990 139

“Schools represent a challenge for the software industry.

Although diverting corporate resources to schools may

appear to be folly in the short run, in the long run it is a

strategy for survival. Programmers and their organizations

should devote their time and services to schools at the

primary and secondary levels.”

Tom DeMarco, Making a Difference in the Schools, IEEE

Software, November 1990.93

93DOI: 10.1109/52.60592

http://doi.ieeecomputersociety.org/10.1109/52.60592

1991

1991 141

1991 142

“Quantitative results based on a 1988 study of inspection of

2.5 million lines of high-level code at Bell-Northern Research

… confirm that code inspection is still one of the most

efficient ways to remove software defects.”

Glen W. Russell, Experience With Inspection in

Ultralarge-Scale Development, IEEE Software, January

1991.94

94DOI: 10.1109/52.62929

http://doi.ieeecomputersociety.org/10.1109/52.62929

1991 143

“The emerging discipline of software risk management is …

defined as an attempt to formalize the risk-oriented correlates

of success into a readily applicable set of principles and

practices. Its objectives are to identify, address, and eliminate

risk items before they become either threats to successful

software operation or major sources of software rework.”

Barry W. Boehm, Software Risk Management: Principles and

Practices, IEEE Software, January 1991.95

95DOI: 10.1109/52.62930

http://doi.ieeecomputersociety.org/10.1109/52.62930

1991 144

1991 145

“A model that patterns software manufacturing after

hardware manufacturing… introduces a testing and

analysis station between each development phase. At each

station, the incoming product is tested and failure data are

analyzed and compared with the quality criteria used. The

decision is then made whether to proceed to the next phase or

repair the software.”

Ytzhak Levendel, Improving Quality With a Manufacturing

Process, IEEE Software, March 1991.96

96DOI: 10.1109/52.73745

http://doi.ieeecomputersociety.org/10.1109/52.73745

1991 146

“The testing and quality assurance of the Motif 1.0 graphical

user-interface software are described. The testing goals,

which fell into three general categories (code coverage,

defect-density, and defect-arrival rate), and a deliverable

formal test suite are examined. The three phases of the

testing process-evaluation, test development, and regression

testing-and the tools used in testing are discussed.”

Paul R. Ritter, Jason Su, Experience in Testing the Motif

Interface, IEEE Software, March 1991.97

97DOI: 10.1109/52.73746

http://doi.ieeecomputersociety.org/10.1109/52.73746

1991 147

1991 148

“Our natural limitations in reasoning power, memory, and

communication are both the reasons we debug and why the

activity of debugging itself can be so difficult. The debuggers

… are visibility tools, making hidden information available to

programmers.”

Thomas G. Moher, Paul R. Wilson, Guest Editors’ Introduction:

Offsetting Human Limits with Debugging Technology, IEEE

Software, May 1991.98

98DOI: 10.1109/MS.1991.10025

http://doi.ieeecomputersociety.org/10.1109/MS.1991.10025

1991 149

“Programmers have no clear idea bow to systematically debug

a program, which makes it difficult to share and evaluate

methods … Debugging tools must support each stage in the

debugging process: hypothesis verification, hypothesis-set

modification, and hypothesis selection.”

Jingde Cheng, Keijiro Araki, Zengo Furukawa, A General

Framework for Debugging, IEEE Software, May 1991.99

99DOI: 10.1109/52.88939

http://doi.ieeecomputersociety.org/10.1109/52.88939

1991 150

1991 151

“In 1987 and 1990, the Software Engineering Institute

conducted process assessments of the Software Engineering

Division (SED) of Hughes Aircraft in Fullerton, CA.”

Watts S. Humphrey, Ronald R. Willis, Terry R. Snyder, Software

Process Improvement at Hughes Aircraft, IEEE Software, July

1991.100

100DOI: 10.1109/52.300031

http://doi.ieeecomputersociety.org/10.1109/52.300031

1991 152

“The methods used by the Software Engineering Institute

(SEI’s) Software Capability Evaluation program (SCE)… is

so seriously and fundamentally flawed that it should be

abandoned rather than modified or updated. “

Clement McGowan, Terry B. Bollinger, A Critical Look at

Software Capability Evaluations, IEEE Software, July 1991.101

101DOI: 10.1109/52.300034

http://doi.ieeecomputersociety.org/10.1109/52.300034

1991 153

“The article by T. Bollinger and C. McGowan, entitled ‘A

critical look at software capability evaluation’, see ibid.,

p.25-41 (1991), contains a serious flaw. … common

misconceptions about the SEI … fall into six categories: SCE’s

purpose …; how the SCE method works in practice; the

statistical methods used to determine levels; the ongoing

process of refining the method; the maturity framework; and

the coverage of technology issues.”

Watts S. Humphrey, Bill Curtis, Comments on ‘A Critical Look’,

IEEE Software, July 1991.102

102DOI: 10.1109/52.300033

http://doi.ieeecomputersociety.org/10.1109/52.300033

1991 154

1991 155

“In a nutshel performance analysis is the measuring,

modeling, and tuning of software’s time, space, efficiency, and

accuracy.”

Kathleen Nichols, Paul W. Oman, Guest Editors’ Introduction:

Navigating Complexity to Achieve High Performance, IEEE

Software, September 1991.103

103DOI: 10.1109/MS.1991.10056

http://doi.ieeecomputersociety.org/10.1109/MS.1991.10056

1991 156

1991 157

“Process-management systems often focus on details at the

expense of the big picture. The Cosmos model makes

long-term objectives explicit, so managers can have both

views. Cosmos … combines the best of existing models by

incorporating three perspectives: activity, communication, and

infrastructure. Cosmos is designed to manage a large

software system from beginning to end.”

Raymond T. Yeh, David A. Naumann, John T. LeBaron, George

E. Sumrall, William S. Gilmore, Roland T. Mittermeir, Reinhard

A. Schlemmer, A Commonsense Management Model, IEEE

Software, November 1991.104

104DOI: 10.1109/52.103574

http://doi.ieeecomputersociety.org/10.1109/52.103574

1991 158

“New computers are supplying the massive power that vision

applications require. How to program this hardware efficiently

and naturally is the challenge facing the imaging community.”

Virginio Cantoni, Stefano Levialdi, Guest Editors’ Introduction:

Languages and Environments for Vision Applications, IEEE

Software, November 1991.105

105DOI: 10.1109/MS.1991.10062

http://doi.ieeecomputersociety.org/10.1109/MS.1991.10062

1991 159

“With advances in high-level parallel programming, you can

apply known techniques to computer-vision applications,

rather than use special computer vision language.”

Anthony P. Reeves, Parallel Programming for Computer

Vision, IEEE Software, November 1991.106

106DOI: 10.1109/52.103577

http://doi.ieeecomputersociety.org/10.1109/52.103577

1992

1992 161

1992 162

“Some well-established software fields combining to forge the

new discipline of protocol engineering, which seeks to ease

the development of today’s communication software.”

Ming T. Liu, Fuchun Joseph Lin, Guest Editors’ Introduction:

The Rise of Protocol Engineering, IEEE Software, January

1992.107

107DOI: 10.1109/MS.1992.10000

http://doi.ieeecomputersociety.org/10.1109/MS.1992.10000

1992 163

“New formal methods now exist to design and validate even

complex protocols. These methods are mature enough to be

used by everyone. … A formal method is considered to be one

that has the capability of rendering correctness proofs.”

Gerard J. Holzman, Protocol Design: Redefining the State of

the Art, IEEE Software, January 1992.108

108DOI: 10.1109/52.108773

http://doi.ieeecomputersociety.org/10.1109/52.108773

1992 164

“To succesfully validate a very large protocol, you need three

ingredients: formal modeling, decomposition and abstraction,

and reachability analysis.”

Ming T. Liu, Fuchun Joseph Lin, Protocol Validation for

Large-Scale Applications, IEEE Software, January 1992.109

109DOI: 10.1109/52.108776

http://doi.ieeecomputersociety.org/10.1109/52.108776

1992 165

“A knowledge-based design support system, called KDSS …

helps designers inexperienced in communication system

design easily create advanced systems like intelligent

networks, and large-scale distributed computing systems.”

Norio Shiratori, Kenji Sugawara, Kaoru Takahashi, Tetsuo

Kinoshita, Using Artificial Intelligence in Communication

System Design, IEEE Software, January 1992.110

110DOI: 10.1109/52.108779

http://doi.ieeecomputersociety.org/10.1109/52.108779

1992 166

1992 167

“The focus of CASE research and development has shifted

from making sure each tool works to making sure all tools can

work together. Major vendors are striving to balance

comprehensiveness and compatibility.”

Ronald J. Norman, Minder Chen, Guest Editors’ Introduction:

Working Together to Integrate CASE, IEEE Software, March

1992.111

111DOI: 10.1109/MS.1992.10026

http://doi.ieeecomputersociety.org/10.1109/MS.1992.10026

1992 168

“The reference model permit three forms of integration: data

integration, control integration, and presentation

integration. … The organizational framework divides systems

development and management into three activity levels: IS

infrastructure planning and design is undertaken at the

enterprise level, systems project management and decisions

are made at the project level, and software-development

processes are carried out at the individual and team level. “

Ronald J. Norman, Minder Chen, A Framework for Integrated

CASE, IEEE Software, March 1992.112

112DOI: 10.1109/52.120597

http://doi.ieeecomputersociety.org/10.1109/52.120597

1992 169

“Current work on integrated project support environments

(IPSEs) is based on an inappropriate view of integration, and

… IPSE developers should create semantically rich

infrastructures or produce well-integrated tool sets rather

than open repositories or infrastructures.”

John A. McDermid, Alan W. Brown, Learning From IPSE’s

Mistakes, IEEE Software, March 1992.113

113DOI: 10.1109/52.120598

http://doi.ieeecomputersociety.org/10.1109/52.120598

1992 170

“Tool integration is not a property of a single tool, but of its

relationships with other elements in the environment, chiefly

other tools, a platform, and a process. Tool integration is

about the extent to which tools agree. The subject of these

agreements may include data format, user-interface

conventions, use of common functions…”

Brian A. Nejmeh, Ian Thomas, Definitions of Tool Integration

for Environments, IEEE Software, March 1992.114

114DOI: 10.1109/52.120599

http://doi.ieeecomputersociety.org/10.1109/52.120599

1992 171

“The software factory concept … symbolizes a desired

paradigm shift from labor-intensive software production to a

more capital-intensive style in which substantial investments

can be made at an acceptable risk level…”

Christer Fernström, Kjell-Håken Närfelt, Lennart Ohlsson,

Software Factory Principles, Architecture, and Experiments,

IEEE Software, March 1992.115

115DOI: 10.1109/52.120600

http://doi.ieeecomputersociety.org/10.1109/52.120600

1992 172

“HyperCASE integrates tools by combining a hypertext-based

user interface with a common knowledge-based document

repository.”

Karl Reed, Jacob L. Cybulski, A Hypertext Based

Software-Engineering Environment, IEEE Software, March

1992.116

116DOI: 10.1109/52.120603

http://doi.ieeecomputersociety.org/10.1109/52.120603

1992 173

1992 174

“The industry has made great strides in making more

development tools available. It’s now time to find ways to

consistently, objectively evaluate a tool’s utility and

appropriateness.”

Elliot J. Chikofsky, David E. Martin, Hugh Chang, Assessing the

State of Tools Assessment, IEEE Software, May 1992.117

117DOI: 10.1109/MS.1992.10039

http://doi.ieeecomputersociety.org/10.1109/MS.1992.10039

1992 175

“Organizations buy integrated CASE tools only to leave them

on the shelf because they misinterpret the learning curve and

its effect on productivity.”

Chris F. Kemerer, How the Learning Curve Affects CASE Tool

Adoption, IEEE Software, May 1992.118

118DOI: 10.1109/52.136161

http://doi.ieeecomputersociety.org/10.1109/52.136161

1992 176

“Six categories of questions … determine how well a tool does

what it was intended to do. The questionnaire comprises 140

questions divided into the categories: ease of use, power,

robustness, functionality, ease of insertion, and quality of

support.”

Vicky Mosley, How to Assess Tools Efficiently and

Quantitatively, IEEE Software, May 1992.119

119DOI: 10.1109/52.136163

http://doi.ieeecomputersociety.org/10.1109/52.136163

1992 177

1992 178

“Most developers either aren‘t familiar with reliability models

or don‘t know bow to select and apply them. But the need for

accurate predictions is acute, focusing attention on this

comparatively young field. “

Pradip K. Srimani, Yashwant K. Malaiya, Guest Editors’

Introduction: Steps to Practical Reliability Measurement,

IEEE Software, July 1992.120

120DOI: 10.1109/MS.1992.10044

http://doi.ieeecomputersociety.org/10.1109/MS.1992.10044

1992 179

“Reliability is a probability of failure-free operation for a

specified time in a specified environment for a specified

purpose.”

Krishna M. Kavi, Robert C. Tausworth, William W. Everett,

Frederick T. Sheldon, Ralph Brettschneider, James T. Yu,

Reliability Measurement: From Theory to Practice, IEEE

Software, July 1992.121

121DOI: 10.1109/52.143095

http://doi.ieeecomputersociety.org/10.1109/52.143095

1992 180

“Reliability is the statistical study of failures, which occur

because of some defect in the program. The failure is evident,

but you don’t know what mistake is responsible or what you

can do to make the failure disappear. Reliability models are

supposed to tell you what confidence you can have in the

program’s correctness. “

Dick Hamlet, Are We Testing for True Reliability?, IEEE

Software, July 1992.122

122DOI: 10.1109/52.143097

http://doi.ieeecomputersociety.org/10.1109/52.143097

1992 181

“Three separate but related functions comprise an integrated

reliability program: prediction, control, and assessment.”

Ted W. Keller, Norman F. Schneidewind, Applying Reliability

Models to the Space Shuttle, IEEE Software, July 1992.123

123DOI: 10.1109/52.143099

http://doi.ieeecomputersociety.org/10.1109/52.143099

1992 182

1992 183

“In the future, most consumer products will rely on

embedded real-time computers. To produce more robust

applications, development techniques must keep pace with

ever-changing requirements.”

Kwei-Jay Lin, Emmett J. Burke, Guest Editors’ Introduction:

Coming to Grips with Real-Time Realities, IEEE Software,

September 1992.124

124DOI: 10.1109/MS.1992.10059

http://doi.ieeecomputersociety.org/10.1109/MS.1992.10059

1992 184

“The problem of ensuring timing correctness in dynamic

real-time systems has three aspects: resource requirements,

resource availability, and guarantees.”

Swaminathan Natarajan, Wei Zhao, Issues in Building

Dynamic Real-Time Systems, IEEE Software, September

1992.125

125DOI: 10.1109/52.156893

http://doi.ieeecomputersociety.org/10.1109/52.156893

1992 185

1992 186

“Much of a HyperNews interface can be designed without

writing any code at all. With direct manipulation, a user can

design a graphical user interface simply by creating, moving,

and resizing objects on the screen. Experimentation with

different interface styles is possible …”

Jim Rudolf, Cathy Waite, Completing the Job Interface Design,

IEEE Software, November 1992.126

126DOI: 10.1109/52.168854

http://doi.ieeecomputersociety.org/10.1109/52.168854

1992 187

“The Interaction Management Network (IMN) … captures the

essential structure of any interface from task-oriented

specification to object-oriented implementation is

presented. IMN is essentially a task-oriented specification

scheme based on a semantic network.”

Raimund K. Ege, Christian Stary, Designing Maintainable,

Reusable Interfaces, IEEE Software, November 1992.127

127DOI: 10.1109/52.168855

http://doi.ieeecomputersociety.org/10.1109/52.168855

1992 188

“Fourteen concurrent object-oriented languages are

compared in terms of how they deal with communication,

synchronization, process management, inheritance, and

implementation trade-offs. … The languages discussed are

Actors, Abd/1, Abd/R, Argus, COOL, Concurrent Smalltalk,

Eiffel, Emerald, ES-Kit C++, Hybrid, Nexus, Parmacs,

POOL-T, and Presto.”

Krishna Kavi, Steve Hufnagel, Barbara B. Wyatt, Parallelism in

Object-Oriented Languages: A Survey, IEEE Software,

November 1992.128

128DOI: 10.1109/52.168859

http://doi.ieeecomputersociety.org/10.1109/52.168859

1993

1993 190

1993 191

“Will object orientation be the dominant paradigm in the near

future? If it is to be widely used, it must overcome many

legacies, especially the fact that most developers do not think

in terms of objects.”

Annie Kuntzmann-Combelles, Wojtek Kozaczynski, What it

Takes to Make OO Work, IEEE Software, January 1993.129

129DOI: 10.1109/MS.1993.10005

http://doi.ieeecomputersociety.org/10.1109/MS.1993.10005

1993 192

“The wide acceptance of the object-oriented approach is

unprecedented in computer technoLogy. Judging from the the

experience the last 25 year, developers who adopt this

platform stand to reap generous rewards.”

Ivar Jacobson, Is Object Technology Software’s Industrial

Platform?, IEEE Software, January 1993.130

130DOI: 10.1109/52.207218

http://doi.ieeecomputersociety.org/10.1109/52.207218

1993 193

“For better or worse, the real language winner today is C++.”

Ivar Jacobson, Is Object Technology Software’s Industrial

Platform?, IEEE Software, January 1993.131

131DOI: 10.1109/52.207218

http://doi.ieeecomputersociety.org/10.1109/52.207218

1993 194

“Object orientation facilitates change but makes programs

harder for maintainers to understand. … The appearance and

organization of OO object-oriented code may startle may

programmers.”

Paul Matthews, Norman Wilde, Ross Huitt, Maintaining

Object-Oriented Software, IEEE Software, January 1993.132

132DOI: 10.1109/52.207232

http://doi.ieeecomputersociety.org/10.1109/52.207232

1993 195

1993 196

“An operational profile describes how users employ a system

… The operational profile is a quantitative characterization of

how a system will be used that shows how to increase

productivity and reliability and speed development by

allocating development resources to function on the basis of

use. Using an operational profile to guide testing ensures …

the most-used operations will have received the most testing

…”

John D. Musa, Operational Profiles in Software-Reliability

Engineering, IEEE Software, March 1993.133

133DOI: 10.1109/52.199724

http://doi.ieeecomputersociety.org/10.1109/52.199724

1993 197

“Determining the consequences of a stop-test decision …

combines software reliability engineering and economic

analysis … The approach … quantify the economic

consequences associated with terminating testing…”

Willa Ehrlich, Jar Wu, Bala Prasanna, John Stampfel,

Determining the Cost of a Stop-Test Decision, IEEE Software,

March 1993.134

134DOI: 10.1109/52.199726

http://doi.ieeecomputersociety.org/10.1109/52.199726

1993 198

“The Shlaer-Mellor object-oriented analysis method

provides a structured means of identifying objects within a

system by analyzing abstract data types and uses these

objects as a basis for building three formal models:

information, state, and process.”

Mark A. Roberts, Jerry R. Klatt, Mohamed E. Fayad, Louis J.

Hawn, Using the Shlaer-Mellor Object-Oriented Analysis

Method, IEEE Software, March 1993.135

135DOI: 10.1109/52.199729

http://doi.ieeecomputersociety.org/10.1109/52.199729

1993 199

1993 200

“One idea that holds great promise in increasing software

productivity is the automatic synthesis of software from

higher level specifications and reusable components.”

Tom Cain, Elaine Kant, Dorothy Setliff, Practical Software

Synthesis, IEEE Software, May 1993.136

136DOI: 10.1109/MS.1993.10027

http://doi.ieeecomputersociety.org/10.1109/MS.1993.10027

1993 201

“A model-based, automatic software synthesis environment

… automatically generates a macro-dataflow computation

from declarative models. Central to the approach is the

Multigraph Architecture, which provides the framework for

model-based synthesis in real-time, parallel-computing

environments.”

Ted Bapty, Ben Abbott, Gabor Karsai, Janos Sztipanovits,

Csaba Biegl, Model-Based Software Synthesis, IEEE Software,

May 1993.137

137DOI: 10.1109/52.210602

http://doi.ieeecomputersociety.org/10.1109/52.210602

1993 202

1993 203

“Competitive pressure is pushing and pulling the field to a

new level of industrialization. Developers know they must stop

improvising and instill some discipline in to their process”

Robert Lai, The Move to Mature Processes, IEEE Software, July

1993.138

138DOI: 10.1109/MS.1993.10038

http://doi.ieeecomputersociety.org/10.1109/MS.1993.10038

1993 204

“The CMM capability maturity model was designed to help

developers select process-improvement strategies by

determining their current process maturity and identifying the

issues most critical to improving their software quality and

process. … The current version of the CMM is the result of the

feedback from that workshop and ongoing feedback from the

software community.”

Mark C. Paulk, Charles V. Weber, Mary Beth Chrissis, Bill Curtis,

Capability Maturity Model, Version 1.1, IEEE Software, July

1993.139

139DOI: 10.1109/52.219617

http://doi.ieeecomputersociety.org/10.1109/52.219617

1993 205

1993 206

“Following good software-engineering practices is almost a

moral issue; we need a belief system.”

Pei Hsia, Learning to Put Lessons Into Practice, IEEE

Software, September 1993.140

140DOI: 10.1109/MS.1993.10046

http://doi.ieeecomputersociety.org/10.1109/MS.1993.10046

1993 207

“We are so used to the notion that quality must take a back

seat to productivity that we continue to put up with practices

that we know will produce software of lesser quality.”

Pei Hsia, Learning to Put Lessons Into Practice, IEEE

Software, September 1993.141

141DOI: 10.1109/MS.1993.10046

http://doi.ieeecomputersociety.org/10.1109/MS.1993.10046

1993 208

“Most software engineering research has been following a

research-then-transer methodology, with mixed results … In

the industry-as-laboratory approach … researchers identify

problems through close involvement with industrial projects

and create and evaluate solutions in an almost indivisible

research activity. This approach emphasizes what people

actually do or can do in practice, rather than what is possible

in principle.”

Colin Potts, Software-Engineering Research Revisited, IEEE

Software, September 1993.142

142DOI: 10.1109/52.232392

http://doi.ieeecomputersociety.org/10.1109/52.232392

1993 209

“Software engineering most resembles a dynamically

overloaded queue or rush-hour traffic jam.”

Neil C. Olsen, The Software Rush Hour, IEEE Software,

September 1993.143

143DOI: 10.1109/52.232394

http://doi.ieeecomputersociety.org/10.1109/52.232394

1993 210

“Five problems … can contribute to a software project’s failure

… : inadequate system engineering during the proposal and

during front-end development; inadequate tracing, tracking,

and management of system and software requirements;

improper sizing of the target hardware; selection of design,

production, and integration and test methodologies that are

inappropriate to a large software development; and failure to

provide a metrics program that would let managers track the

progress of software production and test.”

David R. Lindstrom, Five Ways to Destroy a Development

Project, IEEE Software, September 1993.144

144DOI: 10.1109/52.232400

http://doi.ieeecomputersociety.org/10.1109/52.232400

1993 211

1993 212

“Europe has spent billions in public and private funds on

developing its information-technology industry. This effort

has certainly made the EC a stronger global competitor; but

the question remains: Is it strong enough?”

Luqi null, Annie Kuntzmann-Combelles, Guest Editors’

Introduction: Advancing Europe’s Fortunes, IEEE Software,

November 1993.145

145DOI: 10.1109/MS.1993.10067

http://doi.ieeecomputersociety.org/10.1109/MS.1993.10067

1993 213

“A big problem in technology transfer is that no one believes

in the product. By using a system of hypotheses and

experiments, technology providers can begin to offer real

benefits instead of hype.”

Heinz Saria, Christophe Debou, Norbert Fuchs, Selling

Believable Technology, IEEE Software, November 1993.146

146DOI: 10.1109/52.241961

http://doi.ieeecomputersociety.org/10.1109/52.241961

1994

1994 215

1994 216

“Safety-critical software must perform as desired and should

never fail. The need for dependability stems from the fact that

the consequences of failure are extremely high, usually a

threat to human life. To write such systems, most now agree

that we must adopt rigorous techniques, rooted in

mathematics.”

Bev Littlewood, John Knight, Guest Editors’ Introduction:

Critical Task of Writing Dependable Software, IEEE Software,

January 1994.147

147DOI: 10.1109/52.251196

http://doi.ieeecomputersociety.org/10.1109/52.251196

1994 217

“Although there are indisputable benefits to society from the

introduction of computers into everyday life, some

applications are inherently risky.”

Dan Craigen, Ted Ralston, Susan Gerhart, Experience with

Formal Methods in Critical Systems, IEEE Software, January

1994.148

148DOI: 10.1109/52.251198

http://doi.ieeecomputersociety.org/10.1109/52.251198

1994 218

“Darlington is a four-reactor nuclear plant east of Toronto. …

Each reactor has two independent shutdown systems: SDS1

drops neutron-absorbing rods into the core, while SDS2

injects liquid poison into the moderator. Both are

safety-critical and require high levels of confidence. In 1982,

Ontario Hydro, with the concurrence of the Atomic Energy

Control Board of Canada (AECB), had decided to fully

implement the shutdown systems’ decision-making logic on

computers. This was to be the first Canadian instance of such

a system, so there were questions about what procedures to

follow, both in developing and licensing the system.”

Dan Craigen, Susan Gerhart, Ted Ralston, Case Study:

Darlington Nuclear Generating Station, IEEE Software,

January 1994.149

149DOI: 10.1109/52.251201

http://doi.ieeecomputersociety.org/10.1109/52.251201

1994 219

1994 220

“Developers have plenty of reasons to avoid investing in

requirements engineering: It is next to impossible to capture

user needs completely, and needs are constantly evolving.

The gap between software research and practice is no more

evident than in the field of requirements engineering.

Requirement engineering has a fairly narrow goal - determine

a need and define the external behavior of a solution - but

the range of research into requirements is enormous.”

Pei Hsia, Alan M. Davis, Guest Editors’ Introduction: Giving

Voice to Requirements Engineering, IEEE Software, March

1994.150

150DOI: 10.1109/52.268949

http://doi.ieeecomputersociety.org/10.1109/52.268949

1994 221

“The author examines two widely held beliefs: requirements

describe a system’s ‘what, not its ‘how’. Requirements must

be represented as abstractions.”

Jawed Siddiqi, Challenging Universal Truths of Requirements

Engineering, IEEE Software, March 1994.151

151DOI: 10.1109/52.268951

http://doi.ieeecomputersociety.org/10.1109/52.268951

1994 222

“Scenarios offer promise as a way to tame requirements

analysis, but progress has been impeded by the lack of a

systematic way to analyze, generate, and validate them.”

Jayarajan Samuel, Pei Hsia, David Kung, Jerry Gao, Cris Chen,

Yasafumi Toyoshima, Formal Approach to Scenario Analysis,

IEEE Software, March 1994.152

152DOI: 10.1109/52.268953

http://doi.ieeecomputersociety.org/10.1109/52.268953

1994 223

1994 224

“Database technology is exploding, as the hierarchical and

relational models give way to object-oriented, distributed

heterogeneous, and other kinds of specialized models.

Designers, programmers, and users need new tools.”

Clement Yu, Weiyi Meng, Confronting Database Complexities,

IEEE Software, May 1994.153

153DOI: 10.1109/52.281712

http://doi.ieeecomputersociety.org/10.1109/52.281712

1994 225

“Retrieval speed and precision ultimately determine the

success of any database system. … Much work remains to

help users retrieve information with ease and efficiency from a

heterogeneous environment in which relational,

object-oriented, textual, and pictorial databases coexist.”

Weiyi Meng, Clement Yu, Progress in Database Search

Strategies, IEEE Software, May 1994.154

154DOI: 10.1109/52.281713

http://doi.ieeecomputersociety.org/10.1109/52.281713

1994 226

1994 227

“Used together, the two relatively young concepts of

measurement and process improvement are more than the

sum of their parts. Careful measurement helps you draw an

objective process model. Thoughtful application of

improvement techniques improves your ability to measure

quality. Leveraging one with the other can take your

organization to new heights.”

Shari Lawrence Pfleeger, Hans Dieter Rombach, Measurement

Based Process Improvement, IEEE Software, July 1994.155

155DOI: 10.1109/52.300077

http://doi.ieeecomputersociety.org/10.1109/52.300077

1994 228

“There are two approaches to process improvement. The

top-down approach compares an organization’s process with

some generally accepted standard process. … The bottom-up

approach assumes that process change must be driven by an

organization’s goals, characteristics, product attributes, and

experiences.”

Frank McGarry, Martyn Thomas, Top-Down vs. Bottom-Up

Process Improvement, IEEE Software, July 1994.156

156DOI: 10.1109/52.300121

http://doi.ieeecomputersociety.org/10.1109/52.300121

1994 229

“In their efforts to determine how technology affects the

software development process, researchers often overlook

organizational and social issues.”

Nancy A. Staudenmayer, Dewayne E. Perry, Lawrence G. Votta,

People, Organizations, and Process Improvement, IEEE

Software, July 1994.157

157DOI: 10.1109/52.300082

http://doi.ieeecomputersociety.org/10.1109/52.300082

1994 230

“For 25 years, software researchers have proposed improving

software development and maintenance with new practices

whose effectiveness is rarely, if ever, backed up by hard

evidence. We suggest several ways to address the problem,

and we challenge the community to invest in being more

scientific.”

Robert L. Glass, Shari Lawrence Pfleeger, Norman Fenton,

Science and Substance: A Challenge to Software Engineers,

IEEE Software, July 1994.158

158DOI: 10.1109/52.300094

http://doi.ieeecomputersociety.org/10.1109/52.300094

1994 231

1994 232

“Systematic software reuse is a paradigm shift in software

engineering from building single systems to building families

of related systems. The goal of software reuse research is to

discover systematic procedures for engineering new systems

from existing assets. Implementing systematic reuse is risky.

Not doing it is also risky.”

William B. Frakes, Sadahiro Isoda, Success Factors of

Systematic Reuse, IEEE Software, September 1994.159

159DOI: 10.1109/52.311045

http://doi.ieeecomputersociety.org/10.1109/52.311045

1994 233

“Reuse is not just a technical issue. Hewlett-Packard studied

why people sometimes resist reuse and which organizational

models appear to encourage reuse more than others. …

successful reuse programs must be integrated within the

culture of a company’s existing organizational structure. One

crucial organizational factor is the relationship between

producers and consumers of reuse components and

services.”

Danielle Fafchamps, Organizational Factors and Reuse, IEEE

Software, September 1994.160

160DOI: 10.1109/52.311049

http://doi.ieeecomputersociety.org/10.1109/52.311049

1994 234

1994 235

“The worldwide software industry is poised for change well

into the next century. How well each developer; researcher, or

country fares may depend on how clear its visions of the

future are.”

Jawed Siddiqi, Mikio Aoyama, William W. Everett, Software

Beyond 2001: A Global Vision, IEEE Software, November

1994.161

161DOI: 10.1109/52.329394

http://doi.ieeecomputersociety.org/10.1109/52.329394

1994 236

“Many developing countries are now entering the

commercial software domain, and this trend should

accelerate in the twenty-first century.”

Capers Jones, Globalization of Software Supply and Demand,

IEEE Software, November 1994.162

162DOI: 10.1109/52.329397

http://doi.ieeecomputersociety.org/10.1109/52.329397

1994 237

“Who wants to try new techniques when there are madman

prowling for someone to blame or ax?”

Tom DeMarco, Sheila Brady, Management-Aided Software

Engineering, IEEE Software, November 1994.163

163DOI: 10.1109/52.329398

http://doi.ieeecomputersociety.org/10.1109/52.329398

1994 238

“Iincreasing connectivity and consumer demands will power

an unprecedented growth in software’s volume and

complexity… the flexibility and robustness of an

object-oriented approach can best meet these future

challenges.”

Grady Booch, Coming of Age in an Object-Oriented World,

IEEE Software, November 1994.164

164DOI: 10.1109/52.329399

http://doi.ieeecomputersociety.org/10.1109/52.329399

1994 239

“The twentieth century was a time of ignorance, but also the

dawn of golden age of practice.”

Robert L. Glass, The Software-Research Crisis, IEEE Software,

November 1994.165

165DOI: 10.1109/52.329400

http://doi.ieeecomputersociety.org/10.1109/52.329400

1994 240

“The large aspiration to place the whole of software

development alongside the established branches as one

more branch of engineering is misconceived. … Our

aspiration should be to develop specialized branches of

software engineering, each meriting its own place alongside

the specialized established branches.”

Michael Jackson, Problems, Methods and Specialization, IEEE

Software, November 1994.166

166DOI: 10.1109/52.329402

http://doi.ieeecomputersociety.org/10.1109/52.329402

1994 241

“For data in which there is a known relationship among

variables, the dynamic queries interface is useful for training

and education by exploration. For situations in which there

are understood correlations, but their complexity makes it

difficult for nonexperts to follow, dynamic queries can allow a

wider range of people to explore the interactions (among

health and demographic variables, a table of elements, and

economic or market data, for example).”

Ben Schneiderman, Dynamic Queries for Visual Information

Seeking, IEEE Software, November 1994.167

167DOI: 10.1109/52.329404

http://doi.ieeecomputersociety.org/10.1109/52.329404

1995

1995 243

1995 244

“Legacy software was written years ago using outdated

techniques, yet it continues to do useful work. Migrating and

updating this baggage from our past has technical and

nontechnical challenges, ranging from justifying the expense

to dealing with offshore contractors to using

program-understanding and visualization techniques.”

Keith Bennett, Legacy Systems: Coping with Success, IEEE

Software, January 1995.168

168DOI: 10.1109/52.363157

http://doi.ieeecomputersociety.org/10.1109/52.363157

1995 245

“As the manager of a small software-reengineering company, I

am continually confronted with the task of justifying

reengineering. … they technical issues may be irrelevant if

you are not able to make a business case for solving them.”

Harry M. Sneed, Planning the Reengineering of Legacy

Systems, IEEE Software, January 1995.169

169DOI: 10.1109/52.363168

http://doi.ieeecomputersociety.org/10.1109/52.363168

1995 246

“Opinions on rapid prototyping as a practical development

tool vary widely, with conventional wisdom seeing it more as a

research topic than a workable method. The authors counter

this notion with results from 39 case studies, most of which

have used this approach successfully.”

James M. Bieman, V. Scott Gordon, Rapid Prototyping:

Lessons Learned, IEEE Software, January 1995.170

170DOI: 10.1109/52.363162

http://doi.ieeecomputersociety.org/10.1109/52.363162

1995 247

“Usability engineering isn’t just for the multimillion dollar

companies with massive internal test labs. Jakob Nielsen, a

distinguished engineer at SunSoft, relates how he and another

designer (yes, a two-person project) employed low-cost,

easily accessible techniques to perform several useful studies.

The techniques, detailed in his recent book Usability

Engineering (AP Professional, 1994), are virtually free of

complex statistical methods, relying instead on simple

observation and interpretation.”

Bill Curtis, Jakob Nielsen, Applying Discount Usability

Engineering, IEEE Software, January 1995.171

171DOI: 10.1109/52.363161

http://doi.ieeecomputersociety.org/10.1109/52.363161

1995 248

1995 249

“Tools are not the driving force of software technology they

used to be. But this does not mean they have become less

important; on the contrary, a full set of supporting tools for

each development phase is now a basic requirement. It does

mean other things are now as important as tools…”

Pertti Lounama, The Future Belongs to the Specialized Tool,

IEEE Software, March 1995.172

172DOI: 10.1109/MS.1995.10010

http://doi.ieeecomputersociety.org/10.1109/MS.1995.10010

1995 250

“Computer technology is exploding. Friendly interfaces, a full

range of media, and unlimited connectivity are pushing

technology ever deeper into the fabric of society. How can

developers incorporate all this new technology into their

applications? Today’s development environments are taking

advantage of emerging integration standards to offer

specialized tools.”

David Sharon, Rodney Bell, Tools to Engineer New

Technologies into Applications, IEEE Software, March

1995.173

173DOI: 10.1109/52.368255

http://doi.ieeecomputersociety.org/10.1109/52.368255

1995 251

“Point: Alan Chmura — Proper use of CASE tools can and

does significantly improve developer productivity and yield

high-quality systems. … Counterpoint: Henry David Crockett

— As they are currently applied, CASE tools seldom improve

productivity or quality. … Many IS managers assume that

CASE is a software solution to all development problems.”

Alan Chmura, Henry David Crockett, Point Counterpoint:

What’s the Proper Role for CASE Tools?, IEEE Software, March

1995.174

174DOI: 10.1109/52.368258

http://doi.ieeecomputersociety.org/10.1109/52.368258

1995 252

“In many applications users must browse large images.

Building on user familiarity with one-dimensional scroll bars,

many designers simply use two one-dimensional scroll bars

when the application requires independent control over the

horizontal and vertical directions, as in panning a map. … in

many cases this solution is inadequate.”

Ben Shneiderman, Catherine Plaisant, David Carr,

Image-Browser Taxonomy and Guidelines for Designers,

IEEE Software, March 1995.175

175DOI: 10.1109/52.368260

http://doi.ieeecomputersociety.org/10.1109/52.368260

1995 253

“Sound can potentially reveal patterns and anomalies in data

that are difficult to perceive visually. Moreover, psychological

studies show that some types of data are more quickly

assimilated when presented with sound; an audio alarm is the

classic example.”

Daniel A. Reed, Tara M. Madhyastha, Data Sonification: Do You

See What I Hear?, IEEE Software, March 1995.176

176DOI: 10.1109/52.368264

http://doi.ieeecomputersociety.org/10.1109/52.368264

1995 254

1995 255

“Not a day goes by that the general public does not come into

contact with a real-time system. As their numbers and

importance grow, so do the implications for software

developers.”

William W. Everett, Shinichi Honiden, Guest Editors’

Introduction: Reliability and Safety of Real-Time Systems,

IEEE Software, May 1995.177

177DOI: 10.1109/52.382177

http://doi.ieeecomputersociety.org/10.1109/52.382177

1995 256

“Software verification is often the last defense against

disasters caused by faulty software development. When lives

and fortunes depend on software, software quality and its

verification demand increased attention. … How do you

assess that critical automated systems are acceptably safe

and reliable?”

Keith W. Miller, Jeffrey M. Voas, Software Testability: The New

Verification, IEEE Software, May 1995.178

178DOI: 10.1109/52.382180

http://doi.ieeecomputersociety.org/10.1109/52.382180

1995 257

“The best prototype for designing your new user interface is

your old user interface. The second-best prototype is a

competing product. Your competitors have invested

significant resources in designing and implementing what they

believe to be good user interfaces. You should take advantage

of those investments. “

Jakob Nielsen, A Home-Page Overhaul Using Other Web Sites,

IEEE Software, May 1995.179

179DOI: 10.1109/52.382190

http://doi.ieeecomputersociety.org/10.1109/52.382190

1995 258

1995 259

“There is an enormous disconnection between what

academicians and consultants think will revolutionize

development and what actually works in the trenches. We

have much to learn about what really works, what works a

little, and what doesn’t work at all. Debating issues over time

can help us accumulate knowledge and reach a consensus

on the most promising solutions.”

Stephen J. Andriole, Debatable Development: What Should We

Believe?, IEEE Software, July 1995.180

180DOI: 10.1109/MS.1995.10034

http://doi.ieeecomputersociety.org/10.1109/MS.1995.10034

1995 260

“Systems analysis is the study of a system for the purpose of

understanding and documenting its essential

characteristics. Analysis is neither design nor

implementation. Analysis focuses on real-world problems,

whereas design and implementation focus on computerized

solutions.”

Robert B. Jackson, David W. Embley, Scott N. Woodfield, OO

Systems Analysis: Is It or Isn’t It?, IEEE Software, July

1995.181

181DOI: 10.1109/52.391825

http://doi.ieeecomputersociety.org/10.1109/52.391825

1995 261

“Many nonformalists seem to believe that formal methods are

merely an academic exercise – a form of mental

masturbation that has no relation to real-world problems. …

We address and dispel seven new myths about formal

methods …”

Jonathan P. Bowen, Michael G. Hinchey, Seven More Myths of

Formal Methods, IEEE Software, July 1995.182

182DOI: 10.1109/52.391826

http://doi.ieeecomputersociety.org/10.1109/52.391826

1995 262

“We redesigned the Sun home page after observing users …

One change we made shows the benefits of this type of

testing: We discovered early on that users didn’t recognize

the “What’s New at Sun” button as a link, and … we

redesigned the button immediately … use of the ‘What’s New

at Sun’ button increased by 416 percent… small interface

changes can lead to dramatic changes in user behavior! “

Jakob Nielsen, Using Paper Prototypes In Home-page Design,

IEEE Software, July 1995.183

183DOI: 10.1109/52.391840

http://doi.ieeecomputersociety.org/10.1109/52.391840

1995 263

1995 264

“In our haste to speed development, we should consider if we

are sprinting in the right direction. Is faster time-to-market

equally important to every developer? Does a faster cycle

time necessarily guarantee success? And how does the

answer change from one year to the next?”

David N. Card, Guest Editor’s Introduction: The RAD Fad–Is

Timing Really Everything?, IEEE Software, September

1995.184

184DOI: 10.1109/MS.1995.10045

http://doi.ieeecomputersociety.org/10.1109/MS.1995.10045

1995 265

“To be successful with RAD (rapid application development),

we can no longer look just at the software product in isolation.

A RAD development process demands that we expand our

view to encompass users and their work environments-and if

we do it right, everyone benefits. But given all the risks, would

you stake mission-critical projects on RAD? If it is not

mission-critical, then why bother at all?”

Erran Carmel, John P. Reilly, Point-Counterpoint: Does RAD

Live Up to the Hype?, IEEE Software, September 1995.185

185DOI: 10.1109/52.406752

http://doi.ieeecomputersociety.org/10.1109/52.406752

1995 266

“Earl Wheeler told me …: ‘The key thrust … was delegating

power down. It was likemagic! Improved quality,

productivity, morale. We have small teams, with no central

control. The teams own the process, but they have to

haveone. They have many different processes. They own the

schedule, but they feel the pressure of the market. This

pressure causes them to reach for tools on their own’.”

Frederick P. Brooks Jr., The Mythical Man-Month: After 20

Years, IEEE Software, September 1995.186

186DOI: 10.1109/MS.1995.10041

http://doi.ieeecomputersociety.org/10.1109/MS.1995.10041

1995 267

“The Mythical Man-Month is only incidentally about software

but primarily about how people in teams make things.There

is surely some truth in this; in the preface to the 1975 edition

I said that managing a software project is more like other

management than most programmers initially believe. I still

believe that to be true. Human history is a drama in which the

stories stay the same, the scripts of those stories change

slowly with evolving cultures, and the stage settings change

all the time. So it is that we see our twentieth-century selves

mirrored in Shakespeare, Homer,and the Bible.”

Frederick P. Brooks Jr., The Mythical Man-Month: After 20

Years, IEEE Software, September 1995.187

187DOI: 10.1109/MS.1995.10041

http://doi.ieeecomputersociety.org/10.1109/MS.1995.10041

1995 268

“At Hitachi Software, we organize software projects in a way

that retains high-quality software and improves scheduling.

We do this by forcing ‘necessary’ conflicts among

independent groups within the larger software-development

team. We believe that by creating a competitive atmosphere

between the design and quality-assurance departments,

engineers on both teams are motivated to be quality

sensitive.”

Akira K. Onoma, Tsuneo Yamaura, Practical Steps Toward

Quality Development, IEEE Software, September 1995.188

188DOI: 10.1109/52.406760

http://doi.ieeecomputersociety.org/10.1109/52.406760

1995 269

“What are the three most important things to remember when

you buy a house? Most real estate agents have a simple

answer: location, location, location. And what are the three

most important things to remember when attempting

software-process improvement? My answer: people, people,

people.”

Watts S. Humphrey, Making Process Improvement Personal,

IEEE Software, September 1995.189

189DOI: 10.1109/52.406762

http://doi.ieeecomputersociety.org/10.1109/52.406762

1995 270

1995 271

“There is undoubtedly a large measure of art involved in

software design. But artistic expression in the absence of

rules results in chaotic design. To produce open systems, we

must agree on some well-defined rules to govern interaction

among systems and subsystems.”

Maarten Boasson, The Artistry of Software Architecture, IEEE

Software, November 1995.190

190DOI: 10.1109/MS.1995.10051

http://doi.ieeecomputersociety.org/10.1109/MS.1995.10051

1995 272

“Most of the designs appeal to multiple styles, but they

generally fall into four main groups: object-oriented

architectures, including information hiding; state-based

architectures; feedback-control architectures; and

architectures that emphasize the system’s real-time

properties.”

Mary Shaw, Comparing Architectural Design Styles, IEEE

Software, November 1995.191

191DOI: 10.1109/52.469758

http://doi.ieeecomputersociety.org/10.1109/52.469758

1995 273

“The 4+1 View Model describes software architecture using

five concurrent views… : The logical view describes the

design’s object model, the process view describes the

design’s concurrency and synchronization aspects; the

physical view describes the mapping of the software onto the

hardware and shows the system’s distributed aspects, and the

development view describes the software’s static

organization in the development environment. Software

designers can organize the description of their architectural

decisions around these four views and then illustrate them

with a few selected use cases, or scenarios, which constitute

a fifth view. “

Philippe Kruchten, The 4+1 View Model of Architecture, IEEE

Software, November 1995.192

192DOI: 10.1109/52.469759

http://doi.ieeecomputersociety.org/10.1109/52.469759

1995 274

“I get uncontrollable giggles when people tell me their

organizations are ‘lean and mean.’ They say it in the most

ponderous tones. They wrinkle their brows earnestly and look

me right in the eye. ‘We’re lean and mean here,’ they say. They

say this even though they themselves are overweight and

rather sweet. And that’s only the first of the contradictions.”

Tom DeMarco, What ‘Lean and Mean’ Really Means, IEEE

Software, November 1995.193

193DOI: 10.1109/52.469767

http://doi.ieeecomputersociety.org/10.1109/52.469767

1996

1996 276

1996 277

“The consequences of Moore’s Law for IEEE Software are

significant. In short, in the coming decades, we will see

technological and market niches that constantly form, shift,

merge, split, and disappear. Computers will permeate most of

our buildings (homes and offices), cars, wallets, watches,

maps, and credit cards. Existing devices (faxes, phones, PCs,

TVs, GPSs, pagers, PDAs, and the like) will merge into forms

that are specialized to particular uses (the so-called

‘convergence revolution’).”

Ted J. Biggerstaff, Moore’s Law: Change or Die, IEEE Software,

January 1996.194

194DOI: 10.1109/MS.1996.476277

http://doi.ieeecomputersociety.org/10.1109/MS.1996.476277

1996 278

“If you are a software developer, manager, or maintainer,

quality is often on your mind. But what do you really mean by

software quality? Is your definition adequate? Is the software

you produce better or worse than you would like it to be?”

Shari Lawrence Pfleeger, Barbara Kitchenham, Software

Quality: The Elusive Target, IEEE Software, January 1996.195

195DOI: 10.1109/52.476281

http://doi.ieeecomputersociety.org/10.1109/52.476281

1996 279

“Discussions of software quality typically focus on the

development process or the characteristics of the software

product. The third level of quality - the outcome of software

development - is usually neglected, although this is perhaps

of greatest interest to business management. Outcome

depends on how the product is used and determines the

business value obtained from the development project.”

Pamela Simmons, Quality Outcomes: Determining Business

Value, IEEE Software, January 1996.196

196DOI: 10.1109/52.476283

http://doi.ieeecomputersociety.org/10.1109/52.476283

1996 280

“Today the dominant modus operandi for software

development is heavily process-oriented… the emphasis on

process… comes at the expense of … using adequate

product quality models. The fundamental axiom of software

product quality is: … tangible internal characteristics…

determine its external quality attributes. … A product quality

model…must … identify the tangible (measurable and/or

assessable) internal product characteristics that have the

most significant effect on external quality attributes. “

R. Geoff Dromey, Cornering the Chimera, IEEE Software,

January 1996.197

197DOI: 10.1109/52.476284

http://doi.ieeecomputersociety.org/10.1109/52.476284

1996 281

“In 1991, Philips’ CEO named a Software Process

Improvement task force to focus on the increasing

importance of software … In addition to improving its

processes, the organization improved its

requirements-and-design engineering architecture and its

inspections, and it introduced metrics.”

Hans Aerts, Jan Rooijmans, Michiel Van Genuchten, Software

Quality in Consumer Electronics Products, IEEE Software,

January 1996.198

198DOI: 10.1109/52.476286

http://doi.ieeecomputersociety.org/10.1109/52.476286

1996 282

“The need to be beautiful and produce more elaborate and

polished designs changes our traditionally restrained and

functionality-oriented design focus.”

Jakob Nielsen, The Importance of Being Beautiful, IEEE

Software, January 1996.199

199DOI: 10.1109/52.476290

http://doi.ieeecomputersociety.org/10.1109/52.476290

1996 283

1996 284

“Developments in requirements engineering, as in system

development, have come in waves. The next wave of

requirements techniques and tools should account for the

problem and development context, accommodate

incompleteness, and recognize and exploit the non-absolute

nature of user needs.”

Jawed Siddiqi, M. Chandra Shekaran, Requirements

Engineering: The Emerging Wisdom, IEEE Software, March

1996.200

200DOI: 10.1109/MS.1996.506458

http://doi.ieeecomputersociety.org/10.1109/MS.1996.506458

1996 285

“To find the right balance of quality-attribute requirements,

you must identify the conflicts among desired quality

attributes and work out a balance of attribute satisfaction.”

Hoh In, Barry Boehm, Identifying Quality-Requirement

Conflicts, IEEE Software, March 1996.201

201DOI: 10.1109/52.506460

http://doi.ieeecomputersociety.org/10.1109/52.506460

1996 286

“A lack of solid historical data makes project managers,

executives, and clients blind to the realities of software

development.”

Capers Jones, Our Worst Current Development Practices,

IEEE Software, March 1996.202

202DOI: 10.1109/52.506467

http://doi.ieeecomputersociety.org/10.1109/52.506467

1996 287

1996 288

“Software engineering is a young profession. We still have

much to learn from each other. Past experience suggests that

an incremental delivery model would reduce risk and

improve project management.”

Pei Hsia, Making Software Development Visible, IEEE

Software, May 1996.203

203DOI: 10.1109/MS.1996.493016

http://doi.ieeecomputersociety.org/10.1109/MS.1996.493016

1996 289

“If you’re building a relatively complex system involving

multiple computers and multiple users, and if the system

entails significant innovation - such as new technology or

expanded scale - something will inevitably go wrong.

Realizing this might encourage you to use both design and

user-interface prototypes?,’and the spiral model of

development so that you can look ahead and assess risks as

you go.”

Karen Mackey, Why Bad Things Happen to Good Projects,

IEEE Software, May 1996.204

204DOI: 10.1109/52.493017

http://doi.ieeecomputersociety.org/10.1109/52.493017

1996 290

“Product-line development seeks to achieve reuse across a

domain, or family, of systems. Product-line development

separates the software-development process into two

separate life cycles: domain engineering, which aims to

create reusable assets, and application engineering, which

fields systems using those assets. … We learned that

product-line development demands careful strategic

planning, a mature development process, and the ability to

overcome organizational resistance.”

Lynn D. Stuckey Jr., David C. Gross, Randall R. Macala,

Managing Domain-Specific, Product-Line Development, IEEE

Software, May 1996.205

205DOI: 10.1109/52.493021

http://doi.ieeecomputersociety.org/10.1109/52.493021

1996 291

1996 292

“Thirty years ago, as the software industry was first gathering

steam, most software projects were run by people with no

software experience. Today this is no longer true. … Yet few

would argue that the quality of software project management

has improved in the same period.”

Ann Miller, Tom DeMarco, Managing Large Software Projects,

IEEE Software, July 1996.206

206DOI: 10.1109/MS.1996.526827

http://doi.ieeecomputersociety.org/10.1109/MS.1996.526827

1996 293

“Organizations have invested in dozens of technological

innovations such as fourth-generation languages, CASE

products, object-oriented analysis and programming, and

software reuse. Yet productivity tools simply aren’t delivering

increased productivity even when a project is managed ‘by

the book.’ … the software development environment is a

complex social system that causes such practices to have

unintended consequences.”

Tarek K. Abdel-Hamid, The Slippery Path to Productivity

Improvement, IEEE Software, July 1996.207

207DOI: 10.1109/52.526831

http://doi.ieeecomputersociety.org/10.1109/52.526831

1996 294

“The most important lesson we have learned is to follow up

with suppliers so that they know the importance we place on

quality and process improvement.”

Jim Nielsen, Ann Miller, Selecting Software Subcontractors,

IEEE Software, July 1996.208

208DOI: 10.1109/52.526837

http://doi.ieeecomputersociety.org/10.1109/52.526837

1996 295

“Only through experimentation can true learning, and hence

progress, take place. However, it should be remembered that

one definition of insanity is when a person, failing at a task,

tries the same thing over and over again, expecting a

different result.”

Robert N. Charette, Large-Scale Project Management Is Risk

Management, IEEE Software, July 1996.209

209DOI: 10.1109/52.526838

http://doi.ieeecomputersociety.org/10.1109/52.526838

1996 296

1996 297

“Software tools and new software methodologies can

together play a key role in achieving a higher level of software

quality and productivity. Software quality can be greatly

improved by selecting a correct development tool…

Selecting an inappropriate tool, on the other hand, can

actually hinder software development.”

Ez Nahouraii, Krishna Kavi, Guest Editors’ Introduction:

Software Tools Assessment, IEEE Software, September

1996.210

210DOI: 10.1109/MS.1996.536455

http://doi.ieeecomputersociety.org/10.1109/MS.1996.536455

1996 298

“Because we don’t know how to analyze a tool’s impact on

specific projects, we generally adopt them based on an

intuitive understanding of their expected impact. In many

cases, the actual results of this practice are disappointing.

The problem is aggravated because tool adoption often brings

considerable costs.”

John Henshaw, Ingrid Janssen, Nazim H. Madhavji, Tilmann

Bruckhaus, The Impact of Tools on Software Productivity,

IEEE Software, September 1996.211

211DOI: 10.1109/52.536456

http://doi.ieeecomputersociety.org/10.1109/52.536456

1996 299

“The organization attempts to understand and balance

competing concerns regarding the new technology. These

concerns include acquisition costs, the technology’s effect on

quality and time to market, and the training and support

services it will require. “

Alan W. Brown, Kurt C. Wallnau, A Framework for Evaluating

Software Technology, IEEE Software, September 1996.212

212DOI: 10.1109/52.536457

http://doi.ieeecomputersociety.org/10.1109/52.536457

1996 300

“Migrating legacy systems and developing new systems for

client/server environments has dominated the software

development tool market in the ’90s.”

Alan Chmura, David Sharon, Tools Fair: Untangling the Web

with Web and Client/Server Development Tools, IEEE

Software, September 1996.213

213DOI: 10.1109/52.536460

http://doi.ieeecomputersociety.org/10.1109/52.536460

1996 301

1996 302

“Quantitative data makes sense when you are trying to decide

between two or more alternatives.”

Jakob Nielsen, Usability Metrics: Tracking Interface

Improvements, IEEE Software, November 1996.214

214DOI: 10.1109/MS.1996.10031

http://doi.ieeecomputersociety.org/10.1109/MS.1996.10031

1996 303

“Despite rapid changes in computing and software

development, some fundamental ideas have remained

constant. … Eight such concepts together constitute a viable

foundation for a software engineering discipline:

abstraction, analysis and design methods and notations,

user interface prototyping, modularity and architecture,

software life cycle and process, reuse, metrics, and

automated support.”

Anthony I. Wasserman, Toward a Discipline of Software

Engineering, IEEE Software, November 1996.215

215DOI: 10.1109/52.542291

http://doi.ieeecomputersociety.org/10.1109/52.542291

1996 304

“Working in and designing for other cultures can lead to

communication breakdowns.”

Kumiyo Nakakoji, Beyond Language Translation: Crossing the

Cultural Divide, IEEE Software, November 1996.216

216DOI: 10.1109/52.542293

http://doi.ieeecomputersociety.org/10.1109/52.542293

1996 305

“It’s difficult to determine event order in distributed systems

because of the problem of observability.”

Colin Fidge, Fundamentals of Distributed System

Observation, IEEE Software, November 1996.217

217DOI: 10.1109/52.542297

http://doi.ieeecomputersociety.org/10.1109/52.542297

1997

1997 307

1997 308

“Security demands a rigor like that of other computing areas

that require high quality … In security, the universe is by

definition hostile: a malicious agent actively seeks to cause a

failure.”

Charles P. Pfleeger, The Fundamentals of Information

Security, IEEE Software, January 1997.218

218DOI: 10.1109/52.566419

http://doi.ieeecomputersociety.org/10.1109/52.566419

1997 309

“Objects, patterns, and architectures have much in common.

Each holds the promise of solving chronic software

development problems: high development costs, even higher

maintenance costs, low levels of reuse, unbelievable—and

unrealized—schedules, and so on. “

Stephen J. Mellor, Ralph Johnson, Why Explore Object

Methods, Patterns, and Architectures?, IEEE Software,

January 1997.219

219DOI: 10.1109/MS.1997.566424

http://doi.ieeecomputersociety.org/10.1109/MS.1997.566424

1997 310

“Patterns have given us a vocabulary to talk about structures

larger than modules, procedures, or objects—structures that

outstrip the vocabularies of the proven object design methods

that have served us for the past decade.”

James O. Coplien, Idioms and Patterns as Architectural

Literature, IEEE Software, January 1997.220

220DOI: 10.1109/52.566426

http://doi.ieeecomputersociety.org/10.1109/52.566426

1997 311

“In the software development context, a pattern is an

important and recurring system construct and a pattern

language is a system of patterns organized in a structure that

guides the patterns’ application.”

Ward Cunningham, Norman L. Kerth, Using Patterns to

Improve Our Architectural Vision, IEEE Software, January

1997.221

221DOI: 10.1109/52.566428

http://doi.ieeecomputersociety.org/10.1109/52.566428

1997 312

1997 313

“The goals of consistent design can be clarified by a look at

early user interface design for automobiles. Early automobile

designers offered their own distinct designs for a profusion of

controls. Some designs, such as a brake that was too far from

the gas pedal, were dangerous. There was also a consistency

issue. If your brake was to the left of the gas pedal and your

neighbor’s car had the reverse design, it might be risky to

trade cars. Achieving good design and appropriate

consistency in automobiles took half a century. Let’s hope we

can make the transition faster for Web-search user

interfaces.”

Ben Shneiderman, A Framework for Search Interfaces, IEEE

Software, March 1997.222

222DOI: 10.1109/52.582969

http://doi.ieeecomputersociety.org/10.1109/52.582969

1997 314

“As in most other sciences, we are moving along a

measurement continuum; just as temperature measurement

began as an index finger in the water (and a scale of not hot

enough, hot enough, and too hot) and grew to sophisticated

scales, tools, and techniques, so too is software

measurement maturing and leading to a more sophisticated

understanding of better ways to produce better products.”

Shari Lawrence Pfleeger, Assessing Measurement, IEEE

Software, March 1997.223

223DOI: 10.1109/52.582970

http://doi.ieeecomputersociety.org/10.1109/52.582970

1997 315

“The most successful measurement programs are ones in

which researchers, practitioner, and customer work hand in

hand to meet goals and solve problems. But such

collaboration is rare.”

Ross Jeffery, Bill Curtis, Barbara Kitchenham, Shari Lawrence

Pfleeger, Status Report on Software Measurement, IEEE

Software, March 1997.224

224DOI: 10.1109/52.582973

http://doi.ieeecomputersociety.org/10.1109/52.582973

1997 316

“The more integral software measurement is to the

company’s underlying business strategy, the more likely it is

to succeed.”

Raymond J. Offen, Ross Jeffery, Establishing Software

Measurement Programs, IEEE Software, March 1997.225

225DOI: 10.1109/52.582974

http://doi.ieeecomputersociety.org/10.1109/52.582974

1997 317

1997 318

“Our culture has evolved such that owning up to risks is often

confused with defeatism. Thus, a manager faced with a

nearly impossible schedule may deliberately ignore risks to

project a confident, ‘can-do’ attitude.”

Tom DeMarco, Barry W. Boehm, Software Risk Management,

IEEE Software, May 1997.226

226DOI: 10.1109/MS.1997.589225

http://doi.ieeecomputersociety.org/10.1109/MS.1997.589225

1997 319

“Risk management in maintenance differs in major ways from

risk management in development. Risk opportunities are more

frequent, risks come from more diverse sources, and projects

have less freedom to act on them.”

Kevin Macg. Adams, Robert N. Charette, Mary B. White,

Managing Risk in Software Maintenance, IEEE Software, May

1997.227

227DOI: 10.1109/52.589232

http://doi.ieeecomputersociety.org/10.1109/52.589232

1997 320

“Incorporating hard data into risk estimates can help make

them more accurate.”

Kari Känsälä, Integrating Risk Assessment with Cost

Estimation, IEEE Software, May 1997.228

228DOI: 10.1109/52.589236

http://doi.ieeecomputersociety.org/10.1109/52.589236

1997 321

“There are approximately 670 working days between now and

January 1, 2000. Is that enough time to fix the date fields in

your programs?”

John Charles, Capers Jones, Interview with Capers Jones:

Slow Response to Year 2000 Problem, IEEE Software, May

1997.229

229DOI: 10.1109/MS.1997.10009

http://doi.ieeecomputersociety.org/10.1109/MS.1997.10009

1997 322

1997 323

“There’s something desperately wrong with the quality of the

quantities we’ve been using.”

Robert L. Glass, Telling Good Numbers from Bad Ones, IEEE

Software, July 1997.230

230DOI: 10.1109/MS.1997.595876

http://doi.ieeecomputersociety.org/10.1109/MS.1997.595876

1997 324

“Users should be involved in the design process to improve

the mapping of their goals to the design. Now that prototypes

are being introduced … users should be tested using them in

realistic ways and situations. The results of such testing

should then be fed back into the process, along with other

lessons from the prototyping activity, to modify design. “

Andrew Sears, Arnold M. Lund, Creating Effective User

Interfaces, IEEE Software, July 1997.231

231DOI: 10.1109/MS.1997.595887

http://doi.ieeecomputersociety.org/10.1109/MS.1997.595887

1997 325

“The true choice is not between discount and deluxe usability

engineering. If that were the choice, I would agree that the

deluxe approach would bring better results. The true choice,

however, is between doing something and doing nothing.

Perfection is not an option. My choice is to do something!”

Jakob Nielsen, Something Is Better than Nothing, IEEE

Software, July 1997.232

232DOI: 10.1109/MS.1997.595892

http://doi.ieeecomputersociety.org/10.1109/MS.1997.595892

1997 326

“A checklist for choosing a tool that fits your needs: usability,

functionality, flexibility, portability, support, and cost are all

part of the picture.”

Laura A. Valaer, Robert G. Babb II, Choosing a User Interface

Development Tool, IEEE Software, July 1997.233

233DOI: 10.1109/52.595896

http://doi.ieeecomputersociety.org/10.1109/52.595896

1997 327

“Discussions with users must be carefully planned…

Identifying ourselves and gaining their confidence was of

utmost importance … Learning the work culture and

adapting to it go a long way toward winning support. “

Ben Shneiderman, Catherine Plaisant, Anne Rose, Ajit J.

Vanniamparampil, Low-Effort, High-Payoff User Interface

Reengineering, IEEE Software, July 1997.234

234DOI: 10.1109/52.595958

http://doi.ieeecomputersociety.org/10.1109/52.595958

1997 328

1997 329

“Too often we fail to see a new problem clearly because we

color our perception of it with recollections of similar

problems we’ve solved in the past. We also inject fragments

of those past solutions into our thinking, further obscuring

the current problem.”

Carlo Pescio, When Past Solutions Cause Future Problems,

IEEE Software, September 1997.235

235DOI: 10.1109/52.605925

http://doi.ieeecomputersociety.org/10.1109/52.605925

1997 330

“All this personal connectivity has a price: at times, people

deal electronically with people they do not know, cannot

name, and certainly have no basis to trust.”

Charles P. Pfleeger, Deborah M. Cooper, Security and Privacy:

Promising Advances, IEEE Software, September 1997.236

236DOI: 10.1109/52.605928

http://doi.ieeecomputersociety.org/10.1109/52.605928

1997 331

“Computer use leaves trails of activity that can reveal

signatures of misuse as well as of legitimate activity.

Depending on the audit method used, one can record a user’s

keystrokes, the system resources used, or the system calls

made by some collection of processes.”

Steven A. Hofmeyr, Andrew P. Kosoresow, Intrusion Detection

via System Call Traces, IEEE Software, September 1997.237

237DOI: 10.1109/52.605929

http://doi.ieeecomputersociety.org/10.1109/52.605929

1997 332

1997 333

“Before software development can become a true engineering

discipline, its practitioners must be well schooled in

computer science, discrete mathematics, and a subject too

rarely addressed in most university courses today:

engineering economy.”

Steve Tockey, A Missing Link in Software Engineering, IEEE

Software, November 1997.238

238DOI: 10.1109/52.636594

http://doi.ieeecomputersociety.org/10.1109/52.636594

1997 334

“Most software engineering graduates begin their careers

lacking an appreciation of real-world conditions.”

Ray Dawson, Ron Newsham, Introducing Software Engineers

to the Real World, IEEE Software, November 1997.239

239DOI: 10.1109/52.636640

http://doi.ieeecomputersociety.org/10.1109/52.636640

1997 335

“When it comes to software engineering education, there is a

gap between what industry needs and what universities

offer.”

Nancy R. Mead, Neal Coulter, Kathy Beckman, Soheil

Khajenoori, Collaborations: Closing the Industry-Academia

Gap, IEEE Software, November 1997.240

240DOI: 10.1109/52.636668

http://doi.ieeecomputersociety.org/10.1109/52.636668

1997 336

“Complexity is not completely essential; it is feasible to

reduce and to manage complexity. “

Christof Ebert, The Road to Maturity: Navigating Between

Craft and Science, IEEE Software, November 1997.241

241DOI: 10.1109/52.636674

http://doi.ieeecomputersociety.org/10.1109/52.636674

1998

1998 338

1998 339

“Our canonical example was the thermostat on the wall. …

There’s nothing about the Web, or desktop, or Windows vs.

Sun that had anything to do with the initial design of Java.”

Patrick Naughton, Basic to Java: Assembling a Career, IEEE

Software, January 1998.242

242DOI: 10.1109/MS.1998.646824

http://doi.ieeecomputersociety.org/10.1109/MS.1998.646824

1998 340

“We ended up merging NeWS and X, which was just torture. I

was constantly agitating for mercy; I wanted them to just

shoot us. “

Patrick Naughton, Basic to Java: Assembling a Career, IEEE

Software, January 1998.243

243DOI: 10.1109/MS.1998.646824

http://doi.ieeecomputersociety.org/10.1109/MS.1998.646824

1998 341

“The likely future of the software industry is this: it will be

either the best of times or the worst of times-or both. … Year

2000 crisis may plunge us all into several years of decidedly

unpleasant times.”

Ed Yourdon, A Tale of Two Futures, IEEE Software, January

1998.244

244DOI: 10.1109/52.646826

http://doi.ieeecomputersociety.org/10.1109/52.646826

1998 342

“I like to tell people that my head is in software’s academic

world, but that my heart is in its practice.”

Robert L. Glass, In Praise of Practice, IEEE Software, January

1998.245

245DOI: 10.1109/MS.1998.10007

http://doi.ieeecomputersociety.org/10.1109/MS.1998.10007

1998 343

“For software developers at established organizations,

caught in the cross-fire of the language wars, the operating

system wars, the platform wars, the middleware wars, and

the browser wars, laboring to push yet another release out

the door under compressed schedules, weighed down by the

millstone of legacy code, and torn asunder by the ravages of

ill-conceived and ever-changing requirements, then the future

looks grim - to put it mildly. “

Grady Booch, Leaving Kansas, IEEE Software, January

1998.246

246DOI: 10.1109/MS.1998.646876

http://doi.ieeecomputersociety.org/10.1109/MS.1998.646876

1998 344

“Modesty prevents me from using the adjectives most

commonly applied by developers toiling under such

circumstances.”

Grady Booch, Leaving Kansas, IEEE Software, January

1998.247

247DOI: 10.1109/MS.1998.646876

http://doi.ieeecomputersociety.org/10.1109/MS.1998.646876

1998 345

“We might be expected to become serious software

engineers. We won’t, of course. “

Michael Jackson, Will There Ever Be Software Engineering?,

IEEE Software, January 1998.248

248DOI: 10.1109/MS.1998.646877

http://doi.ieeecomputersociety.org/10.1109/MS.1998.646877

1998 346

“The software development and maintenance processes,

which I prefer to unify and call software evolution, are key to

managing computerization. In my view it is key to our survival

in this computer age.”

M.m. Lehman, Software’s Future: Managing Evolution, IEEE

Software, January 1998.249

249DOI: 10.1109/MS.1998.646878

http://doi.ieeecomputersociety.org/10.1109/MS.1998.646878

1998 347

“History does suggest that our early expectations about the

problem-solving potential of unbridled technology should be

relatively low.”

Steve Andriole, Software: The Good, the Bad, and the Real,

IEEE Software, January 1998.250

250DOI: 10.1109/MS.1998.646879

http://doi.ieeecomputersociety.org/10.1109/MS.1998.646879

1998 348

1998 349

“You could … say that the main business of everyone on

earth is to help everyone else— including ourselves — get

enlightened because the technology is getting more and more

dangerous. “

Alan Kay, Alan Kay: Inventing the Future, IEEE Software,

March 1998.251

251DOI: 10.1109/MS.1998.10013

http://doi.ieeecomputersociety.org/10.1109/MS.1998.10013

1998 350

“Most things printed in the first 100 years of the printing

press and most of the stuff printed now is crap. But because

of luck and the bell curve of life, you can still get decently

educated by reading just a few thousand books.”

Alan Kay, Alan Kay: Inventing the Future, IEEE Software,

March 1998.252

252DOI: 10.1109/MS.1998.10013

http://doi.ieeecomputersociety.org/10.1109/MS.1998.10013

1998 351

“A lot of thinking is like case law: ‘Has somebody rich and

famous done this? If so, maybe I should pay attention to it.’”

Alan Kay, Alan Kay: Inventing the Future, IEEE Software,

March 1998.253

253DOI: 10.1109/MS.1998.10013

http://doi.ieeecomputersociety.org/10.1109/MS.1998.10013

1998 352

“The first microprocessors were incredibly slow. You had to

understand Moore’s law, what was going to happen. And you

had to have imagination.”

Alan Kay, Alan Kay: Inventing the Future, IEEE Software,

March 1998.254

254DOI: 10.1109/MS.1998.10013

http://doi.ieeecomputersociety.org/10.1109/MS.1998.10013

1998 353

“Slowly, we are bridging the gap between requirements

engineering research and practice. The gap is still large, but

we have a few more practice-validated methods and tools in

our pockets, and the bridge building continues.”

Daniel M. Berry, Brian Lawrence, Guest Editors’ Introduction:

Requirements Engineering, IEEE Software, March 1998.255

255DOI: 10.1109/MS.1998.663780

http://doi.ieeecomputersociety.org/10.1109/MS.1998.663780

1998 354

“Something is seriously wrong with reuse. If there is a

motherpie-and-applehood topic in software engineering,

reuse is it. Everyone believes in it; everyone thinks we should

be doing more of it. So do I. … ‘Why hasn’t that potential

already been achieved?’ … I think reuse hasn’t succeeded to

the extent we would like because there aren’t that many

software components that can be reused.”

Robert L. Glass, Reuse: What’s Wrong with This Picture?, IEEE

Software, March 1998.256

256DOI: 10.1109/52.663785

http://doi.ieeecomputersociety.org/10.1109/52.663785

1998 355

“Some software designers have recently turned to building

architecture for inspiration in their efforts to improve

professional practice. An attempt to apply the studio method

of architectural training to software design education…

reveals much about education and practice in both

professions. Studio courses provoke creative reflection on

how to improve current training practices and could provide a

new way to develop software design expertise.”

Sarah Kuhn, The Software Design Studio: An Exploration,

IEEE Software, March 1998.257

257DOI: 10.1109/52.663788

http://doi.ieeecomputersociety.org/10.1109/52.663788

1998 356

1998 357

“Web technology can offer a relatively painless way to extend

the life of legacy systems, which are, by definition, both

fragile and valuable. The Web can give aging applications a

modern graphical interface, deliver them to employees’

desktops regardless of platform, and grant access to

databases distributed across the enterprise.”

Ellis Horowitz, Guest Editor’s Introduction: Migrating

Software to the World Wide Web, IEEE Software, May 1998.258

258DOI: 10.1109/MS.1998.676714

http://doi.ieeecomputersociety.org/10.1109/MS.1998.676714

1998 358

“Geographic information systems store a wealth of

information for diverse applications, and users must often

access GISs from various vendors and residing on varying

platforms. … a spatial query mechanism for GISs that is

distributed and open, giving users access to many different

GISs across the Internet.”

Serena Coetzee, Judith Bishop, A New Way to Query GISs on

the Web, IEEE Software, May 1998.259

259DOI: 10.1109/52.676719

http://doi.ieeecomputersociety.org/10.1109/52.676719

1998 359

“Object-orientation (OO) does not match the way we normally

think. … however, that this is true of programming in any

language using any paradigm.”

Richard Wiener, Watch Your Language!, IEEE Software, May

1998.260

260DOI: 10.1109/52.676738

http://doi.ieeecomputersociety.org/10.1109/52.676738

1998 360

“When the authors asked users to test an API early in the

development life cycle, the users’ questions about how the

API works and in what contexts turned out to be extremely

helpful. Iterative API design and testing, along with feedback

from real users, contribute to cleaner design and a more

helpful reference manual.”

Clay I. Spinuzzi, Samuel G. McLellan, Alvin W. Roesler, Joseph

T. Tempest, Building More Usable APIs, IEEE Software, May

1998.261

261DOI: 10.1109/52.676963

http://doi.ieeecomputersociety.org/10.1109/52.676963

1998 361

“McDonald’s produces hamburgers that perfectly match user

requirements and satisfy expectations for affordability and

timely arrival. But quality dining? No one, not even

McDonald’s, claims that.”

Robert L. Glass, Defining Quality Intuitively, IEEE Software,

May 1998.262

262DOI: 10.1109/52.676973

http://doi.ieeecomputersociety.org/10.1109/52.676973

1998 362

1998 363

“Legacy software systems represent a significant investment

but often become difficult to maintain as they age. Not only

does technology evolve beyond them, but business needs

change and may require adding or modifying functions. “

Christof Ebert, Norman F. Schneidewind, Guest Editors’

Introduction: Preserve or Redesign Legacy Systems?, IEEE

Software, July 1998.263

263DOI: 10.1109/MS.1998.687937

http://doi.ieeecomputersociety.org/10.1109/MS.1998.687937

1998 364

“Rebuilding a legacy system has some parallels to the

restoration of a work of art… The restoration involved far

more than updating the code: the development team also had

to understand the existing architecture, add new

functionality, and develop a long-term hardware migration

plan.”

Jim White, Spencer Rugaber, Restoring a Legacy: Lessons

Learned, IEEE Software, July 1998.264

264DOI: 10.1109/52.687941

http://doi.ieeecomputersociety.org/10.1109/52.687941

1998 365

“Drawing on extensive data from the NASA Space Shuttle’s

guidance software, Schneidewind … provides several

formulas for tracking maintenance stability defined as

increasing functionality with decreasing failures …”

Norman F. Schneidewind, How To Evaluate Legacy System

Maintenance, IEEE Software, July 1998.265

265DOI: 10.1109/52.687942

http://doi.ieeecomputersociety.org/10.1109/52.687942

1998 366

“If this decade’s mantra is ‘show me the money,’ those of us

in software will find it in maintenance. Life-cycle data shows

that maintenance is where we spend the biggest chunk of

practitioner time and money.”

Robert L. Glass, Maintenance: Less Is Not More, IEEE

Software, July 1998.266

266DOI: 10.1109/52.687948

http://doi.ieeecomputersociety.org/10.1109/52.687948

1998 367

1998 368

“The rate of change in the software world is such that shortly

after the ink dries on this issue, we can only hope to have

captured a snapshot of a rapidly maturing domain.”

Grady Booch, Wojtek Kozaczynski, Guest Editors’

Introduction: Component-Based Software Engineering, IEEE

Software, September 1998.267

267DOI: 10.1109/MS.1998.714621

http://doi.ieeecomputersociety.org/10.1109/MS.1998.714621

1998 369

“A component-based system requires an infrastructure for

communication and collaboration. … examines the Microsoft

MTS and OMG Corba infrastructure technologies. …

comparing how Microsoft’s MTS and Sun’s Enterprise

JavaBeans handle transactions and component state.”

Alan W. Brown, Kurt C. Wallnau, The Current State of CBSE,

IEEE Software, September 1998.268

268DOI: 10.1109/52.714622

http://doi.ieeecomputersociety.org/10.1109/52.714622

1998 370

“The need to closely examine a problematic aspect of

component reuse: the necessity and potential expense of

validating components in their new environments.”

Elaine J. Weyuker, Testing Component-Based Software: A

Cautionary Tale, IEEE Software, September 1998.269

269DOI: 10.1109/52.714817

http://doi.ieeecomputersociety.org/10.1109/52.714817

1998 371

“Ellen Ullman, describing her first Linux installation, wrote ‘I

exaggerate only a little if I say that Linux is a reassertion of

our dignity as humans working with mere machine; a return,

quite literally, to the source.’”

James Sanders, Linux, Open Source, and Software’s Future,

IEEE Software, September 1998.270

270DOI: 10.1109/52.714831

http://doi.ieeecomputersociety.org/10.1109/52.714831

1998 372

1998 373

“This issue is dedicated to Alan Davis, our dear colleague,

thinker, doer, leader, sometimes dreamer, and a congenial

friend always.”

Maarten Boasson, Carl K. Chang, Tomoo Matsubara, Guest

Editors’ Introduction: Setting the Standard, IEEE Software,

November 1998.271

271DOI: 10.1109/MS.1998.10037

http://doi.ieeecomputersociety.org/10.1109/MS.1998.10037

1998 374

“The ultimate survival of the Java Virtual Machine is much

less certain. Java’s inventors at Sun Microsystems have

presented their creation as a single inseparable concept that

encompasses a language, a rich class library, and a software

distribution standard based on a virtual machine. These three

parts are not nearly as inseparable as Sun claims. “

Michael Franz, The Java Virtual Machine: A Passing Fad?,

IEEE Software, November 1998.272

272DOI: 10.1109/52.730834

http://doi.ieeecomputersociety.org/10.1109/52.730834

1998 375

“At Hitachi Software, our software has attained such high

quality that only 0.02 percent of all bugs in a software

program emerge at the user’s site. … We do not use

sophisticated tools or state-of-the-art methodology — we

simply test programs and fix the bugs detected.”

Tsuneo Yamaura, How to Design Practical Test Cases, IEEE

Software, November 1998.273

273DOI: 10.1109/52.730835

http://doi.ieeecomputersociety.org/10.1109/52.730835

1998 376

“There is probably no hope of changing the view that Wall

Street takes of treating investment in people as an expense.

But companies that play this game will suffer in the long run.

The converse is also true: Companies that manage their

investment sensibly will prosper in the long run. Companies of

knowledge workers have to realize that it is their investment in

human capital that matters most. The good ones already do.”

Timothy Lister, Tom DeMarco, Human Capital, IEEE Software,

November 1998.274

274DOI: 10.1109/52.730859

http://doi.ieeecomputersociety.org/10.1109/52.730859

1998 377

“Adler differentiates between four levels of reading.

Elementary reading… recognize individual words on a page.

Inspectional reading is … trying to get the most out of a book

or article within a given amount of time. Analytical reading is

… by trying to get the most out of a book or article with an

unlimited amount of time. Syntopical reading… involves

reading sets of books or articles on a common topic in a way

that enables you to extract information that might or might

not be present in any of the individual materials studied.”

Steve McConnell, How To Read a Technical Article, IEEE

Software, November 1998.275

275DOI: 10.1109/MS.1998.10035

http://doi.ieeecomputersociety.org/10.1109/MS.1998.10035

1999

1999 379

1999 380

“Linux is a free, open-source operating system that looks like

Unix, except that it runs on PCs as well as other platforms.

Linux was created by Linus Torvalds in 1991. Today, Linux is

cooperatively improved by Torvalds and thousands of

volunteers from around the world using open-source

development methods.”

Terry Bollinger, Peter Beckman, Guest Editors’ Introduction:

Linux on the Move, IEEE Software, January 1999.276

276DOI: 10.1109/MS.1999.744564

http://doi.ieeecomputersociety.org/10.1109/MS.1999.744564

1999 381

“Far from simply producing freeware clones of existing

technologies, Linux and the open-source world now turn out

some of the best software at any price.”

Evan Leibovitch, The Business Case for Linux, IEEE Software,

January 1999.277

277DOI: 10.1109/52.744567

http://doi.ieeecomputersociety.org/10.1109/52.744567

1999 382

“Linux has been a boon to computing in the developing

world. In Pakistan, we have used Linux productively in both

academia and industry.”

Rafeeq ur Rehman, Shahid H. Bokhari, Linux and the

Developing World, IEEE Software, January 1999.278

278DOI: 10.1109/52.744570

http://doi.ieeecomputersociety.org/10.1109/52.744570

1999 383

“How much is the Year 2000 problem going to cost you? How

long is it going to take you to get ready? Can you make it in

time?”

Ware Myers, Lawrence H. Putnam, Year 2000 Work Comes

Down to the Wire, IEEE Software, January 1999.279

279DOI: 10.1109/52.744575

http://doi.ieeecomputersociety.org/10.1109/52.744575

1999 384

1999 385

“The key to successful measurement programs is to make

the metrics meaningful and tailor them to the

organization—however small it might be.”

Karlheinz Kautz, Making Sense of Measurement for Small

Organizations, IEEE Software, March 1999.280

280DOI: 10.1109/52.754047

http://doi.ieeecomputersociety.org/10.1109/52.754047

1999 386

“An organized, comprehensive metrics program can bring

order to the chaos of small-project management and form the

foundation for a concerted process improvement effort.”

Ross Grable, Dale Divis, Casey Pogue, Jacquelyn Jernigan,

Metrics for Small Projects: Experiences at the SED, IEEE

Software, March 1999.281

281DOI: 10.1109/52.754048

http://doi.ieeecomputersociety.org/10.1109/52.754048

1999 387

“Design is one of the most elusive yet fascinating topics in the

software field. It is elusive because, no matter how thoroughly

academics try to shape it into a teachable, testable,

fact-based topic, it just doesn’t fit. It is fascinating because

design holds the key to the success of most software

projects.”

Robert L. Glass, On Design, IEEE Software, March 1999.282

282DOI: 10.1109/MS.1999.754066

http://doi.ieeecomputersociety.org/10.1109/MS.1999.754066

1999 388

1999 389

“Everyone who ever taught project management seems to

have a favorite disaster story, whether it’s the new Denver

airport baggage handling system, the London Stock

Exchange, or the French Railways. … we must also consider a

wider viewpoint: success requires much more than good

engineering.”

Andrew J. Bytheway, Guest Editor’s Introduction: Successful

Software Projects and How to Achieve Them, IEEE Software,

May 1999.283

283DOI: 10.1109/MS.1999.765781

http://doi.ieeecomputersociety.org/10.1109/MS.1999.765781

1999 390

“You cannot go back and add quality. By the time you figure

out you have a quality problem, it is probably too late to fix it.”

John S. Reel, Critical Success Factors In Software Projects,

IEEE Software, May 1999.284

284DOI: 10.1109/52.765782

http://doi.ieeecomputersociety.org/10.1109/52.765782

1999 391

“The world has become used to having just about every

object, from cars to toasters, equipped with computers. The

hardware chip density has for many years followed Moore’s

law of doubling in capacity every 18 months, and experts

agree that there is no end in sight to this trend. The increase in

hardware power will continue largely independent of advances

in software technology. As hardware performance increases,

so will the demand to feed this hardware with software.”

Wolfgang Strigel, Guest Editor’s Introduction: What’s the

Problem: Labor Shortage or Industry Practices?, IEEE

Software, May 1999.285

285DOI: 10.1109/MS.1999.765787

http://doi.ieeecomputersociety.org/10.1109/MS.1999.765787

1999 392

“Estimates of unfilled software engineering, management,

and support jobs in the US range from 100,000 to more than

300,000. Projects addressing Y2K repairs and euro currency

conversion could push the total shortfall to 600,000 jobs.”

Capers Jones, The Euro, Y2K, and the US Software Labor

Shortage, IEEE Software, May 1999.286

286DOI: 10.1109/52.765788

http://doi.ieeecomputersociety.org/10.1109/52.765788

1999 393

“The worldwide demand for software services is increasing at

a rate faster than the current output of qualified software

engineers. India is poised to meet this demand with a

growing pool of educated, trained software professionals.”

Subroto Bagchi, India’s Software Industry: The People

Dimension, IEEE Software, May 1999.287

287DOI: 10.1109/52.765789

http://doi.ieeecomputersociety.org/10.1109/52.765789

1999 394

“First and foremost the Unified Process is a software

development process … the set of activities needed to

transform a user’s requirements into a software system.

However, the Unified Process is … it is a generic process

framework that can be specialized for a very large class of …

systems, … application areas, … organizations, …

competence levels, and … project sizes.”

Grady Booch, Ivar Jacobson, James Rumbaugh, The Unified

Process, IEEE Software, May 1999.288

288DOI: 10.1109/MS.1999.10013

http://doi.ieeecomputersociety.org/10.1109/MS.1999.10013

1999 395

1999 396

“Software development is increasingly an ‘acquire and glue’

process. How do you know when you can trust a COTS

component to do what you expect it to in your system?

Software certification is one viable answer. If our industry

doesn’t act soon to police itself, governments might step in

to fill that void.”

Jeffrey Voas, Guest Editor’s Introduction:

Certification-Reducing the Hidden Costs of Poor Quality, IEEE

Software, July 1999.289

289DOI: 10.1109/MS.1999.776944

http://doi.ieeecomputersociety.org/10.1109/MS.1999.776944

1999 397

“Designers, researchers, and developers are already using

virtual environments in many ways and in many domains. The

technology has matured enough that VEs are beginning to be

used to certify the systems they simulate.”

Robyn R. Lutz, Carolina Cruz-Neira, Using Immersive Virtual

Environments for Certification, IEEE Software, July 1999.290

290DOI: 10.1109/52.776945

http://doi.ieeecomputersociety.org/10.1109/52.776945

1999 398

“The general-purpose computing environment that

characterizes the PC and Internet was not designed for

privacy or integrity.”

John Michener, System Insecurity in the Internet Age, IEEE

Software, July 1999.291

291DOI: 10.1109/52.776951

http://doi.ieeecomputersociety.org/10.1109/52.776951

1999 399

“One of the strangest stories in the software world centers

around the programming language Cobol. Academics have

reviled it for decades; its demise has been predicted since

the 1960s; industry gurus have suggested that programmers

who know only Cobol are committing career suicide. … Yet

the giant lumbers on.”

Robert L. Glass, Cobol: A Historic Past, A Vital Future?, IEEE

Software, July 1999.292

292DOI: 10.1109/52.776965

http://doi.ieeecomputersociety.org/10.1109/52.776965

1999 400

1999 401

“The very idea that software reuse is a legitimate research

discipline is a paradox: in all other engineering disciplines,

reuse is an integral part of good engineering design — so

integral that it is not even noteworthy. “

Ali Mili, Hafedh Mili, Sherif Yacoub, Edward Addy, Toward an

Engineering Discipline of Software Reuse, IEEE Software,

September 1999.293

293DOI: 10.1109/52.795098

http://doi.ieeecomputersociety.org/10.1109/52.795098

1999 402

“The ability to use Linux in personal-computer platforms,

plus the ready availability of Linux source code, makes the

PC-based Linux workstation an ideal platform for ATM

multimedia development. “

Richard L. Klevans, Steven A. Wright, Ze Zhang, Thomas C.

Jepsen, Linux Update: An Experimental ATM Network, IEEE

Software, September 1999.294

294DOI: 10.1109/52.795099

http://doi.ieeecomputersociety.org/10.1109/52.795099

1999 403

“Architecture is not so much about the software, but about

the people who write the software. The core principles of

architecture, such as coupling and cohesion, aren’t about the

code. The code doesn’t ‘care’ about how cohesive or

decoupled it is; if anything, tightly coupled software lacks

some of the performance snags found in more modular

systems. But people do care about their coupling to other

team members. “

James O. Coplien, Guest Editor’s Introduction: Reevaluating

the Architectural Metaphor-Toward Piecemeal Growth, IEEE

Software, September 1999.295

295DOI: 10.1109/MS.1999.795100

http://doi.ieeecomputersociety.org/10.1109/MS.1999.795100

1999 404

“Geographically distributed development teams face

extraordinary communication and coordination problems. …

common but unanticipated events can stretch project

communication to the breaking point. Project schedules can

fall apart, particularly during integration.”

James D. Herbsleb, Rebecca E. Grinter, Architectures,

Coordination, and Distance: Conway’s Law and Beyond, IEEE

Software, September 1999.296

296DOI: 10.1109/52.795103

http://doi.ieeecomputersociety.org/10.1109/52.795103

1999 405

“This is a pretty strange situation I find myself in. I hope you

sympathize with me. I’m addressing a room full of people, a

whole football field full of people. I don’t know hardly anything

about what all of you do. So—please be nice to me.What is

the connection between what I am doing in the field of

architecture and what you are doing in computer science and

trying to do in the new field of software design? “

Christopher Alexander, The Origins of Pattern Theory: The

Future of the Theory, and the Generation of a Living World,

IEEE Software, September 1999.297

297DOI: 10.1109/52.795104

http://doi.ieeecomputersociety.org/10.1109/52.795104

1999 406

“What I am proposing … is a view of programming as the

natural, genetic infrastructure of a living world which you/we

are capable of creating, managing, making available, and

which could then have the result that a living structure in our

towns, houses, work places, cities, becomes an attainable

thing. That would be remarkable. It would turn the world

around, and make living structure the norm once again,

throughout society, and make the world worth living in again.”

Christopher Alexander, The Origins of Pattern Theory: The

Future of the Theory, and the Generation of a Living World,

IEEE Software, September 1999.298

298DOI: 10.1109/52.795104

http://doi.ieeecomputersociety.org/10.1109/52.795104

1999 407

1999 408

“For many programmers, software development consists of

hacking. As we mature, it is time to follow the example of

other professional disciplines, to put the engineering in

software engineering.”

Steve McConnell, Leonard Tripp, Guest Editors’ Introduction:

Professional Software Engineering-Fact or Fiction?, IEEE

Software, November 1999.299

299DOI: 10.1109/MS.1999.805468

http://doi.ieeecomputersociety.org/10.1109/MS.1999.805468

1999 409

“‘Software Engineering’ programs have become a source of

contention in many universities. Computer Science

departments, many of which have used that phrase to

describe individual courses for decades, claim SE as part of

their discipline. Yet some engineering faculties claim it as a

new specialty among the engineering disciplines. … We need

SE programs that follow the traditional engineering

approach to professional education.”

David Lorge Parnas, Software Engineering Programs Are Not

Computer Science Programs, IEEE Software, November

1999.300

300DOI: 10.1109/52.805469

http://doi.ieeecomputersociety.org/10.1109/52.805469

1999 410

“The IEEE Computer Society and the Association for

Computing Machinery are working on a joint project to

develop a guide to the Software Engineering Body of

Knowledge (SWEBOK). Articulating a body of knowledge is an

essential step toward developing a profession because it

represents a broad consensus regarding the contents of the

discipline. “

Alain Abran, James W. Moore, Robert Dupuis, Pierre Bourque,

Leonard Tripp, The Guide to the Software Engineering Body of

Knowledge, IEEE Software, November 1999.301

301DOI: 10.1109/52.805471

http://doi.ieeecomputersociety.org/10.1109/52.805471

1999 411

“In June 1998, the Texas Board of Professional Engineers

established software engineering as a recognized

engineering discipline and established licensing criteria

specifically suited to software engineers.”

John R. Speed, What Do You Mean I Can’t Call Myself a

Software Engineer?, IEEE Software, November 1999.302

302DOI: 10.1109/52.805472

http://doi.ieeecomputersociety.org/10.1109/52.805472

2000

2000 413

2000 414

“We can learn much from the business community about

effective technology transfer. In particular, understanding

the interests of different types of adopters can suggest to us

the different kinds of evidence needed to convince someone

to try an innovative technology. At the same time, the legal

community offers us advice about what kinds of evidence are

needed to build convincing cases that an innovation is an

improvement over current practice.”

Shari Lawrence Pfleeger, Winifred Menezes, Marketing

Technology to Software Practitioners, IEEE Software, January

2000.303

303DOI: 10.1109/52.819965

http://doi.ieeecomputersociety.org/10.1109/52.819965

2000 415

“Rather than integrating methods from the social sciences

into the systems design process as others have done, this

crosspollination effort strives to inform and improve the

development of software engineering itself through a deeper

understanding of our community’s implicit values and

beliefs.”

Helen Sharp, Hugh Robinson, Mark Woodman, Software

Engineering: Community and Culture, IEEE Software, January

2000.304

304DOI: 10.1109/52.819967

http://doi.ieeecomputersociety.org/10.1109/52.819967

2000 416

2000 417

“That philosophy of extinction has been replaced with one of

extension and inclusion. Cobol applications are, by and large,

too critical and too valuable to consider replacing en masse.”

Edmund C. Arranga, Wilson Price, Guest Editors’ Introduction:

Fresh from Y2K, What’s Next for Cobol?, IEEE Software, March

2000.305

305DOI: 10.1109/MS.2000.841599

http://doi.ieeecomputersociety.org/10.1109/MS.2000.841599

2000 418

“Although recent Internet, Java, and OO trends threaten

Cobol’s dominance, industry will continue to need the

language and its programmers for development as well as

maintenance–especially once OO Cobol becomes an official

standard.”

Bill C. Hardgrave, E. Reed Doke, Cobol in an Object-Oriented

World: A Learning Perspective, IEEE Software, March 2000.306

306DOI: 10.1109/52.841601

http://doi.ieeecomputersociety.org/10.1109/52.841601

2000 419

“Contrary to persistent myths, a committee initially created

Cobol in 1959, not one person. … This material is based on

documents from the 1959 committee work…”

Jean E. Sammet, The Real Creators of Cobol, IEEE Software,

March 2000.307

307DOI: 10.1109/52.841602

http://doi.ieeecomputersociety.org/10.1109/52.841602

2000 420

“Cobol 2002, the new Cobol standard, is expected to be

finalized in approximately 18 months. Cobol 2002 builds on

Cobol’s first-class data handling capabilities and introduces

object-oriented features, environmental improvements, and

many other modern constructs to the language.”

Don Schricker, Cobol for the Next Millennium, IEEE Software,

March 2000.308

308DOI: 10.1109/52.841606

http://doi.ieeecomputersociety.org/10.1109/52.841606

2000 421

2000 422

“The Y2K issue generated an enormous flood of activity for

organizations worldwide. While we survived Y2K with minor

glitches, the Y2K ‘exercise’ forced both developers and users

of software to appreciate the need for software to function

correctly in expected and unexpected situations. None of us is

immune to the problems of the software industry.”

David M. Weiss, Betty H.C. Cheng, Guest Editors’ Introduction:

Requirements Engineering-Integrating Technology, IEEE

Software, May 2000.309

309DOI: 10.1109/MS.2000.896245

http://doi.ieeecomputersociety.org/10.1109/MS.2000.896245

2000 423

“There’s something I don’t understand about the

open-source movement. Oh, I understand open source

intellectually. … What I don’t understand is something more

sociological. I don’t understand who those folks are who want

to do all that code reading and reviewing for no recompense.

It goes against the grain of everything I know about the

software field.”

Robert L. Glass, The Sociology of Open Source: Of Cults and

Cultures, IEEE Software, May 2000.310

310DOI: 10.1109/MS.2000.10027

http://doi.ieeecomputersociety.org/10.1109/MS.2000.10027

2000 424

2000 425

“A ‘one size fits all’ approach doesn’t work in software

development. Processes work or are appropriate only under

certain conditions.”

Ioana Rus, Mikael Lindvall, Guest Editors’ Introduction:

Process Diversity in Software Development, IEEE Software,

July 2000.311

311DOI: 10.1109/MS.2000.854063

http://doi.ieeecomputersociety.org/10.1109/MS.2000.854063

2000 426

“The software industry has practiced pair programming–two

programmers working side by side at one computer on the

same problem–for years. But people who haven’t tried it often

reject the idea as a waste of resources. … pair programming

yields better software products in less time–and happier,

more confident programmers.”

Ward Cunningham, Laurie Williams, Robert R. Kessler, Ron

Jeffries, Strengthening the Case for Pair Programming, IEEE

Software, July 2000.312

312DOI: 10.1109/52.854064

http://doi.ieeecomputersociety.org/10.1109/52.854064

2000 427

“Scrum is a process for incrementally building software in

complex environments. Scrum provides empirical controls

that allow the development to occur as close to the edge of

chaos as the developing organization can tolerate. … During

the sprint, the team holds frequent (usually daily) Scrum

meetings. These meetings address the observation made by

Brooks: ‘How does a project get to be a year late? One day at

a time.’ When the team comes together for a short, daily

meeting, any slip is immediately obvious to everyone.”

Norman S. Janoff, Linda Rising, The Scrum Software

Development Process for Small Teams, IEEE Software, July

2000.313

313DOI: 10.1109/52.854065

http://doi.ieeecomputersociety.org/10.1109/52.854065

2000 428

“Different methodologies are inevitable, stemming directly

from the questions of what constitutes a methodology and

what are a methodology’s underlying principles. Projects differ

according to size, composition, priorities, and criticality.”

Alistair Cockburn, Selecting a Project’s Methodology, IEEE

Software, July 2000.314

314DOI: 10.1109/52.854070

http://doi.ieeecomputersociety.org/10.1109/52.854070

2000 429

“Although the organizations included in this section differ in

continents and cultures, several common themes emerge

from these reports. All organizations had quantifiable

business targets and managed their pursuit of these targets

empirically.”

Bill Curtis, Guest Editor’s Introduction: The Global Pursuit of

Process Maturity, IEEE Software, July 2000.315

315DOI: 10.1109/MS.2000.854072

http://doi.ieeecomputersociety.org/10.1109/MS.2000.854072

2000 430

“By ‘ad hoc,’ most computing people have meant something

that is chaotic and undisciplined; it became a sort of

computing dirty word. But a closer look at the dictionary says

that ‘ad hoc’ really means ‘tailored to the problem at hand.’

Ad hoc approaches might or might not be chaotic, the

dictionary is telling us, but what they are really about is using

a best approach determined not by some kind of

project-independent thinking, but by some very

project-focused thinking.”

Robert L. Glass, Process Diversity and a Computing Old

Wives’/Husbands’ Tale, IEEE Software, July 2000.316

316DOI: 10.1109/MS.2000.10036

http://doi.ieeecomputersociety.org/10.1109/MS.2000.10036

2000 431

2000 432

“The Internet and public phone system (upon which the

Internet sits) provide an information highway that also was

not designed to thwart ‘bad guys.’ As a result, today we rely

on an infrastructure that enables rogue individuals and

nations to remotely attack information assets.”

Nancy Mead, Jeffrey Voas, Guest Editor’s Introduction:

Malicious IT, IEEE Software, September 2000.317

317DOI: 10.1109/MS.2000.10040

http://doi.ieeecomputersociety.org/10.1109/MS.2000.10040

2000 433

“Malicious code is any code added, changed, or removed

from a software system to intentionally cause harm or

subvert the system’s intended function.”

Gary McGraw, Greg Morrisett, Attacking Malicious Code: A

Report to the Infosec Research Council, IEEE Software,

September 2000.318

318DOI: 10.1109/52.877857

http://doi.ieeecomputersociety.org/10.1109/52.877857

2000 434

“Attacks can involve numerous attackers targeting many

victims. Defining what constitutes an attack is difficult

because multiple perspectives are involved. The attacker

viewpoint is typically characterized by intent and risk of

exposure. From a victim’s perspective, intrusions are

characterized by their manifestations, which might or might

not include damage. “

Julia Allen, John McHugh, Alan Christie, Defending Yourself:

The Role of Intrusion Detection Systems, IEEE Software,

September 2000.319

319DOI: 10.1109/52.877859

http://doi.ieeecomputersociety.org/10.1109/52.877859

2000 435

“Jslint… statically scans Java source code looking for

potentially insecure coding practices. Automated source

code scanning tools can help programmers easily prevent

some types of bugs.”

Gary McGraw, Edward W. Felten, John Viega, Tom Mutdosch,

Statically Scanning Java Code: Finding Security

Vulnerabilities, IEEE Software, September 2000.320

320DOI: 10.1109/52.877869

http://doi.ieeecomputersociety.org/10.1109/52.877869

2000 436

“We now realize that small-scale software engineering is not

just a degenerate case of large-scale software engineering

but an important subfield in its own right. “

Robert Ward, Mauri Laitinen, Mohamed Fayad, Guest Editors’

Introduction: Software Engineering in the Small, IEEE

Software, September 2000.321

321DOI: 10.1109/MS.2000.10047

http://doi.ieeecomputersociety.org/10.1109/MS.2000.10047

2000 437

“Computer science research was where we would have

expected generalized solutions to arise. But that is simply not

the case. CS might have begun the domain generalization

movement with its compiler-compiling work, but the world of

practice, and especially the world of vendors, quickly took

over that chore—and that dramatic success.”

Robert L. Glass, The Generalization of an Application Domain,

IEEE Software, September 2000.322

322DOI: 10.1109/MS.2000.10043

http://doi.ieeecomputersociety.org/10.1109/MS.2000.10043

2000 438

2000 439

“Estimates have a number of uses, and you can often get both

better and simpler estimates if you keep the use of your

estimate in mind.”

Richard E. Fairley, Barry W. Boehm, Guest Editors’

Introduction: Software Estimation Perspectives, IEEE

Software, November 2000.323

323DOI: 10.1109/MS.2000.895164

http://doi.ieeecomputersociety.org/10.1109/MS.2000.895164

2000 440

“Several estimation techniques and tools are available for

predicting the amount of time and effort needed to develop

software systems. Most of these techniques require a wide

variety of input factors, including historical data, system

complexity measures, the development team’s level of skill,

any project constraints, and an estimate of the volume of

code (the project’s size). “

James Bielak, Improving Size Estimates Using Historical Data,

IEEE Software, November 2000.324

324DOI: 10.1109/52.895165

http://doi.ieeecomputersociety.org/10.1109/52.895165

2000 441

“Product quality directly relates to project cost and schedule

estimation; for example, undetected defects in a key work

product—such as a requirements document—might lead to

time-consuming adjustments. “

Stefan Biffl, Using Inspection Data for Defect Estimation, IEEE

Software, November 2000.325

325DOI: 10.1109/52.895166

http://doi.ieeecomputersociety.org/10.1109/52.895166

2000 442

“One of the most important factors in improving worker

performance is prompt and explicit feedback. “

Watts S. Humphrey, Guest Editor’s Introduction: The Personal

Software Process-Status and Trends, IEEE Software,

November 2000.326

326DOI: 10.1109/MS.2000.895171

http://doi.ieeecomputersociety.org/10.1109/MS.2000.895171

2000 443

”‘How important is mathematics to the software

practitioner?’ According to this research, at least, the answer

is not only ‘not very much,’ it’s ‘not nearly as much as we

academics have thought.’”

Robert L. Glass, A New Answer to ‘How Important is

Mathematics to the Software Practitioner?’, IEEE Software,

November 2000.327

327DOI: 10.1109/MS.2000.10052

http://doi.ieeecomputersociety.org/10.1109/MS.2000.10052

2001

2001 445

2001 446

“Usability is not a luxury but a basic ingredient in software

systems: People’s productivity and comfort relate directly to

the usability of the software they use.”

Helmut Windl, Natalia Juristo, Larry Constantine, Guest

Editors’ Introduction: Introducing Usability, IEEE Software,

January 2001.328

328DOI: 10.1109/MS.2001.903155

http://doi.ieeecomputersociety.org/10.1109/MS.2001.903155

2001 447

“Contrary to what some might think, usability is not just the

appearance of the user interface (UI). Usability relates to how

the system interacts with the user, and it includes five basic

attributes: learnability, efficiency, user retention over time,

error rate, and satisfaction.”

Helmut Windl, Natalia Juristo, Xavier Ferré, Larry Constantine,

Usability Basics for Software Developers, IEEE Software,

January 2001.329

329DOI: 10.1109/52.903160

http://doi.ieeecomputersociety.org/10.1109/52.903160

2001 448

“A cost-benefit analysis might be a necessary first step in

introducing usability into your organization or a particular

project. In usability cost-benefit analyses, the goal is to

estimate the costs and benefits of specific usability

activities—such as prototyping, usability testing, heuristic

evaluation, and so on—and contrast them with the likely

costs of not conducting the activities.”

George M. Donahue, Usability and the Bottom Line, IEEE

Software, January 2001.330

330DOI: 10.1109/52.903161

http://doi.ieeecomputersociety.org/10.1109/52.903161

2001 449

“Over the last year, I’ve been struck by one of the underlying

principles that leads to better designs: remove duplication.

… Often, the hard part of eliminating duplication is spotting it

in the first place. “

Martin Fowler, Avoiding Repetition, IEEE Software, January

2001.331

331DOI: 10.1109/52.903175

http://doi.ieeecomputersociety.org/10.1109/52.903175

2001 450

2001 451

“Global Software Development requires close cooperation of

individuals with different cultural backgrounds. Cultures

differ on many critical dimensions, such as the need for

structure, attitudes toward hierarchy, sense of time, and

communication styles. “

Deependra Moitra, James D. Herbsleb, Guest Editors’

Introduction: Global Software Development, IEEE Software,

March 2001.332

332DOI: 10.1109/52.914732

http://doi.ieeecomputersociety.org/10.1109/52.914732

2001 452

“Despite the considerable power of today’s asynchronous

technologies for dispersed work—email, voice mail, online

discussion groups, project management tools, Software

Configuration Management, and issue and defect-tracking

databases—there are still powerful reasons for

synchronous—if not face-to-face—communication.

Synchronous communication includes telephone, audio

conferencing, videoconferencing, application sharing, and

sometimes synchronous online code walkthroughs.”

Ritu Agarwal, Erran Carmel, Tactical Approaches for

Alleviating Distance in Global Software Development, IEEE

Software, March 2001.333

333DOI: 10.1109/52.914734

http://doi.ieeecomputersociety.org/10.1109/52.914734

2001 453

“Synching can be problematic because distance still matters

in our supposedly borderless world. Distance particularly

constrains the synching of tacit knowledge, informal

information, and cultural values.”

Brian Nicholson, Richard Heeks, Sundeep Sahay, S. Krishna,

Synching or Sinking: Global Software Outsourcing

Relationships, IEEE Software, March 2001.334

334DOI: 10.1109/52.914744

http://doi.ieeecomputersociety.org/10.1109/52.914744

2001 454

“I learned for myself a design principle that’s served me well

in software development: Keep your user interface code

separate from everything else. It’s a simple rule, embodied

into more than one application framework, but it’s often not

followed, which causes quite a bit of trouble.”

Martin Fowler, Separating User Interface Code, IEEE

Software, March 2001.335

335DOI: 10.1109/52.914754

http://doi.ieeecomputersociety.org/10.1109/52.914754

2001 455

2001 456

” In the software and information technology industry,

organizational change has been a way of life. It is quite telling

to listen to individuals discussing change in their

organizations. Their words frame their philosophies: some

plan and lead change, others manage it, still others

accommodate change, and many simply try to cope with it. “

Ann Miller, Guest Editor’s Introduction: Organizational

Change, IEEE Software, May 2001.336

336DOI: 10.1109/MS.2001.922720

http://doi.ieeecomputersociety.org/10.1109/MS.2001.922720

2001 457

“Software process improvement efforts will fail if we try to

make development processes completely uniform across an

organization.”

Michael Deck, Managing Process Diversity While Improving

Your Practices, IEEE Software, May 2001.337

337DOI: 10.1109/52.922721

http://doi.ieeecomputersociety.org/10.1109/52.922721

2001 458

“Traditional software measurement, like traditional software

process improvement, is misaligned with two of the three

basic strategies, customer intimacy and product

innovativeness. Measurement initiatives can succeed if you

understand your organization’s strategic objectives and then

tailor your measurement practices to fit.”

Stan Rifkin, What Makes Measuring Software So Hard?, IEEE

Software, May 2001.338

338DOI: 10.1109/52.922724

http://doi.ieeecomputersociety.org/10.1109/52.922724

2001 459

“Pressure to achieve estimation targets is common and tends

to cause programmers to skip good software process. This

constitutes an absurd result done for an absurd reason.”

Robert L. Glass, Frequently Forgotten Fundamental Facts

about Software Engineering, IEEE Software, May 2001.339

339DOI: 10.1109/MS.2001.922739

http://doi.ieeecomputersociety.org/10.1109/MS.2001.922739

2001 460

2001 461

“Between the late 1960s and early 1990s, the software

engineering community strove to formalize schemes that

would lead to perfectly correct software. Although a noble

undertaking at first, it soon became apparent that correct

software was, in general, unobtainable. And furthermore, the

costs, even if achievable, would be overwhelming. Modern

software systems, even if correct, can still exhibit undesirable

behaviors as they execute. “

Jeffrey Voas, Guest Editor’s Introduction: Software Fault

Tolerance-Making Software Behave, IEEE Software, July

2001.340

340DOI: 10.1109/MS.2001.936212

http://doi.ieeecomputersociety.org/10.1109/MS.2001.936212

2001 462

“Fault tolerance is generally implemented by error detection

and subsequent system recovery. Recovery consists of error

handling (to eliminate errors from the system state) and fault

handling (to prevent located faults from being activated

again). Fault handling involves four steps: fault diagnosis,

fault isolation, system reconfiguration, and system

reinitialization.”

Jeffrey Voas, Fault Tolerance, IEEE Software, July 2001.341

341DOI: 10.1109/MS.2001.936218

http://doi.ieeecomputersociety.org/10.1109/MS.2001.936218

2001 463

“There are several ways to describe coupling, but it boils

down to this: changing one module in a program requires

changing another module… Duplication always implies

coupling, because changing one piece of duplicate code

implies changing the other.”

Martin Fowler, Reducing Coupling, IEEE Software, July

2001.342

342DOI: 10.1109/MS.2001.936226

http://doi.ieeecomputersociety.org/10.1109/MS.2001.936226

2001 464

2001 465

“Margaret Boden … identifies basic types of creative

processes: exploratory creativity explores a possible solution

space and discovers new ideas, combinatorial creativity

combines two or more ideas that already exist to create new

ideas, and transformational creativity changes the solution

space to make impossible things possible. Most requirements

engineering RE activities are exploratory. “

Alexis Gizikis, Neil Maiden, Where Do Requirements Come

From?, IEEE Software, September 2001.343

343DOI: 10.1109/52.951486

http://doi.ieeecomputersociety.org/10.1109/52.951486

2001 466

“Focus on building an environment that will keep your

engineers… Give them rewarding assignments, build

cohesive and committed teams, and know what each of them

is doing. Then, every week if possible, show that you

appreciate their efforts.”

Watts S. Humphrey, Engineers Will Tolerate a Lot of Abuse,

IEEE Software, September 2001.344

344DOI: 10.1109/52.951487

http://doi.ieeecomputersociety.org/10.1109/52.951487

2001 467

“Whether you are benchmarking an organization or simply a

project, it all boils down to one thing—data. Do you have the

necessary data in your company, and is that data valid and

comparable?”

Katrina D. Maxwell, Collecting Data for Comparability:

Benchmarking Software Development Productivity, IEEE

Software, September 2001.345

345DOI: 10.1109/52.951490

http://doi.ieeecomputersociety.org/10.1109/52.951490

2001 468

“In 1999, an organization contributed a large group of

enhancement projects to the International Software

Benchmarking Standards Group’s Data Repository. The

contributing organization received an individual benchmark

report for each project, comparing it to the most relevant

projects in the repository. … The benchmarking exercise

aimed to provide valuable information to the organization and

to measure the benchmarking exercise’s effectiveness given

the repository’s anonymous nature.”

Peter R. Hill, Michael Stringer, Chris Lokan, Terry Wright,

Organizational Benchmarking Using the ISBSG Data

Repository, IEEE Software, September 2001.346

346DOI: 10.1109/52.951491

http://doi.ieeecomputersociety.org/10.1109/52.951491

2001 469

“Most commercial software producers guard access to the

source code of their systems, making it difficult for anyone

outside their organizations to apply a variety of measures that

could potentially improve system security. But since an

attacker could also examine public source code to find flaws,

would source code access be a net gain or loss for security?

… having source code available should on balance work in

favor of system security.”

Michael Caloyannides, Carl Landwehr, Brian Witten, Does Open

Source Improve System Security?, IEEE Software, September

2001.347

347DOI: 10.1109/52.951496

http://doi.ieeecomputersociety.org/10.1109/52.951496

2001 470

“There are two widely different views on the nature of

software work: (1) It is easy, is automatable, and can be done

by anyone. (2) It is the most complex undertaking humanity

has ever tried.”

Robert L. Glass, A Story about the Creativity Involved in

Software Work, IEEE Software, September 2001.348

348DOI: 10.1109/MS.2001.951506

http://doi.ieeecomputersociety.org/10.1109/MS.2001.951506

2001 471

2001 472

“Where design counts is often not in how the software runs

but in how easy it is to change. When how it runs is

important, ease of change can be the biggest factor in

ensuring good performance. This drive toward changeability

is why it’s so important for a design to clearly show what the

program does—and how it does it. After all, it’s hard to

change something when you can’t see what it does.”

Martin Fowler, To Be Explicit, IEEE Software, November

2001.349

349DOI: 10.1109/52.965796

http://doi.ieeecomputersociety.org/10.1109/52.965796

2001 473

“Extreme Programming XP is not the ultimate silver bullet

that offers an answer to all development problems. But it has

gained significant momentum and an increasing number of

software teams are ready to give it a try.”

Wolfgang Strigel, Guest Editor’s Introduction: Reports from

the Field–Using Extreme Programming and Other

Experiences, IEEE Software, November 2001.350

350DOI: 10.1109/MS.2001.965797

http://doi.ieeecomputersociety.org/10.1109/MS.2001.965797

2001 474

“The SW-CMM focuses on both the management issues…

XP, on the other hand, is a specific set of practices—a

‘methodology’—that is effective in the context of small,

colocated teams with rapidly changing requirements. Taken

together, the two methods can create synergy, particularly in

conjunction with other good engineering and management

practices. “

Mark C. Paulk, Extreme Programming from a CMM

Perspective, IEEE Software, November 2001.351

351DOI: 10.1109/52.965798

http://doi.ieeecomputersociety.org/10.1109/52.965798

2001 475

“All programmers learn from experience. A few are rather fast

at it and learn to avoid repeating mistakes after once or twice.

Others are slower and repeat mistakes hundreds of times.

Most programmers’ behavior falls somewhere in between:

They reliably learn from their mistakes, but the process is

slow and tedious. The probability of making a structurally

similar mistake again decreases slightly during each of some

dozen repetitions. Because of this a programmer often takes

years to learn a certain rule—positive or negative—about his

or her behavior. “

Lutz Prechelt, Accelerating Learning from Experience:

Avoiding Defects Faster, IEEE Software, November 2001.352

352DOI: 10.1109/52.965803

http://doi.ieeecomputersociety.org/10.1109/52.965803

2001 476

“Extreme Programming is a fascinating collection of

elements, some good and some bad.”

Robert L. Glass, Extreme Programming: The Good, the Bad,

and the Bottom Line, IEEE Software, November 2001.353

353DOI: 10.1109/MS.2001.965816

http://doi.ieeecomputersociety.org/10.1109/MS.2001.965816

2002

2002 478

2002 479

“Software designers in a networked world cannot pretend to

work in isolation. People are a critical part of the full software

security equation, and software that makes unrealistic or

unreasonable security-related demands on users (for

example, requiring them to memorize too many passwords

that change too often) is software whose security will

inevitably be breached.”

James A. Whittaker, Chuck Howell, Anup K. Ghosh, Building

Software Securely from the Ground Up, IEEE Software,

January 2002.354

354DOI: 10.1109/MS.2002.976936

http://doi.ieeecomputersociety.org/10.1109/MS.2002.976936

2002 480

“Buffer overflow vulnerabilities are perhaps the single most

important security problem of the past decade. “

David Larochelle, David Evans, Improving Security Using

Extensible Lightweight Static Analysis, IEEE Software,

January 2002.355

355DOI: 10.1109/52.976940

http://doi.ieeecomputersociety.org/10.1109/52.976940

2002 481

“Shout it from the rooftops! Computing and software are

maturing into amazing, useful, and — hooray, hooray! —

dependable disciplines.”

Robert L. Glass, Failure Is Looking More like Success These

Days, IEEE Software, January 2002.356

356DOI: 10.1109/MS.2002.976953

http://doi.ieeecomputersociety.org/10.1109/MS.2002.976953

2002 482

2002 483

“In real archaeology, you’re investigating some situation,

trying to understand what you’re looking at and how it all fits

together. To do this, you must be careful to preserve the

artifacts you find and respect and understand the cultural

forces that produced them. … Code becomes legacy code just

about as soon as it’s written, and suddenly we have exactly

the same issues as the archaeologists: What are we looking

at? How does it fit in with the rest of the world? And what were

they thinking?”

Dave Thomas, Andy Hunt, Software Archaeology, IEEE

Software, March 2002.357

357DOI: 10.1109/52.991327

http://doi.ieeecomputersociety.org/10.1109/52.991327

2002 484

“The real departure for Web-based enterprise applications is

the possibility of wide-ranging accessibility. A system that

might be deployed in-house at a manufacturing company can

now be deployed to all the dealers of that manufacturer’s

products. Indeed, it can be deployed to all the customers.”

Martin Fowler, Elizabeth Hendrickson, The Software

Engineering of Internet Software: Guest Editors’

Introduction, IEEE Software, March 2002.358

358DOI: 10.1109/MS.2002.991328

http://doi.ieeecomputersociety.org/10.1109/MS.2002.991328

2002 485

“In only four or five years, the world wide web has changed

from a static collection of HTML web pages to a dynamic

engine that powers e-commerce, collaborative work, and

distribution of information and entertainment. … Web sites

that depend on unreliable software will lose customers, and

the businesses could lose much money. Companies that want

to do business over the Web must spend resources to ensure

high reliability. Indeed, they cannot afford not to.”

Jeff Offutt, Quality Attributes of Web Software Applications,

IEEE Software, March 2002.359

359DOI: 10.1109/52.991329

http://doi.ieeecomputersociety.org/10.1109/52.991329

2002 486

“Relatively few design principles are required to design

scalable systems… : divide and conquer (D&C), asynchrony,

encapsulation, concurrency, parsimony.”

Colleen Roe, Sergio Gonik, Server-Side Design Principles for

Scalable Internet Systems, IEEE Software, March 2002.360

360DOI: 10.1109/52.991330

http://doi.ieeecomputersociety.org/10.1109/52.991330

2002 487

“Despite breathless declarations that the Web represents a

new paradigm defined by new rules, professional developers

are realizing that lessons learned in the pre-Internet days of

software development still apply. Web pages are user

interfaces, HTML programming is programming, and

browser-deployed applications are software systems that can

benefit from basic software engineering principles.”

Larry L. Constantine, Lucy A.D. Lockwood, Usage-Centered

Engineering for Web Applications, IEEE Software, March

2002.361

361DOI: 10.1109/52.991331

http://doi.ieeecomputersociety.org/10.1109/52.991331

2002 488

“Many current Web technologies lend themselves to bad

practices, including cut-and-paste reuse, ad-hoc scripts,

direct-to-database code, and fragmented business logic.

Good design practices are increasingly important in Web

development … a Model-View-Controller… framework lets

developers focus on writing application code instead of

dealing with servlets, requests, or session variables.”

Alan Knight, Naci Dai, Objects and the Web, IEEE Software,

March 2002.362

362DOI: 10.1109/52.991332

http://doi.ieeecomputersociety.org/10.1109/52.991332

2002 489

“How to test output from the server is another classic

problem because of the nature of Web applications. How do

you test HTML? Certainly we don’t want tests that assert that

the output is some long string of HTML. … Testing the Web

page look is not usually the goal; testing the data in the

output is. Any slight change to the output—for example, a

cosmetic change such as making a word appear in

red—should not break an output test.”

Robert Mee, Edward Hieatt, Going Faster: Testing The Web

Application, IEEE Software, March 2002.363

363DOI: 10.1109/52.991333

http://doi.ieeecomputersociety.org/10.1109/52.991333

2002 490

2002 491

“It is difficult to make decisions about performance from just

looking at the design. Rather, you have to actually run the

code and measure performance.”

Martin Fowler, Yet Another Optimization Article, IEEE

Software, May 2002.364

364DOI: 10.1109/MS.2002.1003448

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1003448

2002 492

“Using mock objects, you can test code in splendid isolation,

simulating all those messy real-world things that would

otherwise make automated testing impossible. And, as with

many other testing practices, the discipline of using mock

objects can improve your code’s structure.”

Dave Thomas, Andy Hunte, Mock Objects, IEEE Software, May

2002.365

365DOI: 10.1109/MS.2002.1003449

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1003449

2002 493

“Software organizations’ main assets are not plants,

buildings, or expensive machines. A software organization’s

main asset is its intellectual capital, as it is in sectors such as

consulting, law, investment banking, and advertising. The

major problem with intellectual capital is that it has legs and

walks home every day. At the same rate experience walks out

the door, inexperience walks in the door. Whether or not many

software organizations admit it, they face the challenge of

sustaining the level of competence needed to win contracts

and fulfill undertakings.”

Ioana Rus, Mikael Lindvall, Guest Editors’ Introduction:

Knowledge Management in Software Engineering, IEEE

Software, May 2002.366

366DOI: 10.1109/MS.2002.1003450

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1003450

2002 494

“An emerging trend is to develop knowledge management

and knowledge sharing initiatives within organizations. For

example, NASA formed a Knowledge Management Team,

comprised of NASA representatives. NASA Goddard Space

Flight Center (GSFC) has several knowledge management

initiatives underway on the expert and knowledge retention

side.”

Jay Liebowitz, A Look at NASA Goddard Space Flight Center’s

Knowledge Management Initiatives, IEEE Software, May

2002.367

367DOI: 10.1109/MS.2002.1003451

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1003451

2002 495

“Postmortem analysis is a practical method for initiating

knowledge management by capturing experience and

improvement suggestions from completed projects.”

Andreas Birk, Torgeir Dingsøyr, Tor Stålhane, Postmortem:

Never Leave a Project without It, IEEE Software, May 2002.368

368DOI: 10.1109/MS.2002.1003452

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1003452

2002 496

“In an effort to improve software development and acquisition

processes and explicitly reuse knowledge from previous

software projects, DaimlerChrysler created a Software

Experience Center.”

Kurt Schneider, Jan-Peter von Hunnius, Victor Basili,

Experience in Implementing a Learning Software

Organization, IEEE Software, May 2002.369

369DOI: 10.1109/MS.2002.1003453

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1003453

2002 497

“The software field has been subjected, over the years, to

excessive claims of benefits for almost every new technology.

Fourth-generation languages were to lead to ‘programming

without programmers,’ CASE tools would bring about ‘the

automation of programming,’ and object orientation was to

be a dramatic new methodological approach to systems

development that would replace all the other, older,

methodologies.”

Robert L. Glass, The Naturalness of Object Orientation:

Beating a Dead Horse?, IEEE Software, May 2002.370

370DOI: 10.1109/MS.2002.1003467

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1003467

2002 498

2002 499

“A product line’s scope is specified such that the products

have a high degree of commonality. A product line

organization realizes economically significant reuse…”

John D. McGregor, Linda M. Northrop, Salah Jarrad, Klaus Pohl,

Guest Editors’ Introduction: Initiating Software Product

Lines, IEEE Software, July 2002.371

371DOI: 10.1109/MS.2002.1020282

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1020282

2002 500

“Product line software engineering is an emerging paradigm

that guides organizations toward developing products from

core assets instead of developing them one by one from

scratch.”

Kyo C. Kang, Jaejoon Lee, Patrick Donohoe, Feature-Oriented

Product Line Engineering, IEEE Software, July 2002.372

372DOI: 10.1109/MS.2002.1020288

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1020288

2002 501

“Developers at Nokia recently initiated and used a product line

to create and deliver mobile browser products. They learned

that, to succeed, a software product line must be product and

application driven, rather than reuse or platform driven. “

Ari Jaaksi, Developing Mobile Browsers in a Product Line,

IEEE Software, July 2002.373

373DOI: 10.1109/MS.2002.1020290

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1020290

2002 502

“The discipline of completeness is a willingness and ability to

search for and deal not just with every conceivable mode of

failure but with as many inconceivable modes as you can find

through exploration and testing.”

Terry Bollinger, Guest Editor’s Introduction: Breaking Out of

the Software Engineering Mind-Mold, IEEE Software, July

2002.374

374DOI: 10.1109/MS.2002.1020294

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1020294

2002 503

“Two dichotomies characterize software process improvement

efforts and approaches: disciplined vs. creative work and

procurer risks vs. user satisfaction. “

Reidar Conradi, Alfonso Fuggetta, Improving Software

Process Improvement, IEEE Software, July 2002.375

375DOI: 10.1109/MS.2002.1020295

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1020295

2002 504

“Books on the subject favor the ‘light’ side of the discipline:

project management, software process improvement,

schedule and cost estimation, and so forth. The real

technology necessary to build software is often described

abstractly, given as obvious, or ignored altogether. But

software development is a fundamentally technical problem

for which management solutions can only be partially

effective.”

James A. Whittaker, Steven Atkin, Software Engineering is Not

Enough, IEEE Software, July 2002.376

376DOI: 10.1109/MS.2002.1020297

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1020297

2002 505

“Software measurement has the potential to play an

important role in risk management during product

development. Metrics incorporated into predictive models

can give advanced warning of potential risks.”

Norman Fenton, Paul Krause, Martin Neil, Software

Measurement: Uncertainty and Causal Modeling, IEEE

Software, July 2002.377

377DOI: 10.1109/MS.2002.1020298

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1020298

2002 506

2002 507

“A good article says something new or says something old in

a new way.”

Steve McConnell, From the Editor: How to Write a Good

Technical Article, IEEE Software, September 2002.378

378DOI: 10.1109/MS.2002.10006

http://doi.ieeecomputersociety.org/10.1109/MS.2002.10006

2002 508

“The steady decline in computer science and engineering

enrollments suggests that these more rigorous methods must

be justified or student enrollments will continue to drop.”

Thomas B. Hilburn, Watts S. Humphrey, The Impending

Changes in Software Education, IEEE Software, September

2002.379

379DOI: 10.1109/MS.2002.1032848

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1032848

2002 509

“We must foster stronger communication between diverse

groups, such as various faculty groups, and between

universities and industry. Myths tend to develop when there

is little communication or when the communication that exists

reflects our preconceived notions rather than objective

assessment.”

Donald J. Bagert, Hossein Saiedian, Nancy R. Mead, Software

Engineering Programs: Dispelling the Myths and

Misconceptions, IEEE Software, September 2002.380

380DOI: 10.1109/MS.2002.1032852

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1032852

2002 510

“A difficult thing to achieve in a curriculum is realism— real

products signifying tangible, relevant achievements and real

people signifying collaborative effort.”

Andrew Macfarlane, Helen Hays, Ken Surendran, Simulating a

Software Engineering Apprenticeship, IEEE Software,

September 2002.381

381DOI: 10.1109/MS.2002.1032854

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1032854

2002 511

“Common sense says that, from time to time, we in the

software field ought to be stepping on the brakes, slowing

down to learn the lessons we have just rushed through. And

project retrospectives would be a good thing to do while that

mad, headlong pace has been slowed.”

Robert L. Glass, Project Retrospectives, and Why They Never

Happen, IEEE Software, September 2002.382

382DOI: 10.1109/MS.2002.1032872

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1032872

2002 512

2002 513

“We can use the metadata in two ways: reflective

programming and code generation. … the obvious question

is when to use each style. … Many people find reflection

somewhat hard to use, and it might defeat some of your

environment’s tooling, such as intelligent reference searches

and automated refactorings. .. You need discipline to ensure

that developers don’t hand-edit the generated files. “

Martin Fowler, Using Metadata, IEEE Software, November

2002.383

383DOI: 10.1109/MS.2002.1049381

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1049381

2002 514

“Not only is software increasing in size, complexity, and

percentage of functionality, it is increasing in contribution to

the balance sheet and profit-and-loss statements. “

Ann Miller, Christof Ebert, Guest Editors? Introduction:

Software Engineering as a Business, IEEE Software,

November 2002.384

384DOI: 10.1109/MS.2002.1049382

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1049382

2002 515

“Traditional performance metrics no longer suffice to measure

results and guide organizations in today’s fast-changing

economies. Firms need to link performance metrics to

strategic objectives that will promote positive future results

and accurately capture past performance.”

Steven Mair, A Balanced Scorecard for a Small Software

Group, IEEE Software, November 2002.385

385DOI: 10.1109/MS.2002.1049383

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1049383

2002 516

“Most companies now find that retiring an existing software

product is nearly impossible. To build a replacement, you

need requirements that match the product’s current version,

and they probably don’t exist! They’re not in the

documentation, because it wasn’t kept up to date. You won’t

get them from the original customers, users, or developers,

because those folks are long gone…”

Robert Glass, Predicting Future Maintenance Cost, and How

We?re Doing It Wrong, IEEE Software, November 2002.386

386DOI: 10.1109/MS.2002.1049400

http://doi.ieeecomputersociety.org/10.1109/MS.2002.1049400

2003

2003 518

2003 519

“When in doubt, make a new type.”

Martin Fowler, When to Make a Type, IEEE Software, January

2003.387

387DOI: 10.1109/MS.2003.1159023

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1159023

2003 520

“Today, many organizations and companies have established

explicit roles for requirements engineers. Adequate

techniques and tools for RE tasks (such as elicitation,

validation, negotiation, specification, and documentation)

have emerged and continuously been improved based on

industrial feedback.”

Eric Dubois, Klaus Pohl, Guest Editors’ Introduction: RE 02–A

Major Step toward a Mature Requirements Engineering

Community, IEEE Software, January 2003.388

388DOI: 10.1109/MS.2003.1159024

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1159024

2003 521

“9126-1 quality standard … we selected for the following

reasons: (1) Due to its generic nature, the standard fixes

some high-level quality concepts, and therefore quality

models can be tailored to specific package domains. This is a

crucial point, because quality models can dramatically differ

from one domain to another. (2) The standard lets us create

hierarchies of quality features, which are essential for building

structured quality models. (3) The standard is widespread.”

Juan Pablo Carvallo, Xavier Franch, Using Quality Models in

Software Package Selection, IEEE Software, January 2003.389

389DOI: 10.1109/MS.2003.1159027

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1159027

2003 522

“A misuse case is the negative form of a use case; it

documents a negative scenario. Its actor is an agent with

hostile intent toward the system under design. The

relationships between use and misuse cases document

threats and their mitigations.”

Ian Alexander, Misuse Cases: Use Cases with Hostile Intent,

IEEE Software, January 2003.390

390DOI: 10.1109/MS.2003.1159030

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1159030

2003 523

2003 524

“I consider four models for software system ownership—

that is, models for assigning software systems to their human

owners: 1. Product specialist: A single individual manages all

code with occasional help from other individuals. 2.

Subsystem ownership: Each subsystem has a specific owner,

and each team member owns one or more subsystems. 3.

Chief architect: A chief programmer (architect) has primary

ownership of all code. The team takes supporting roles in

fleshing out the team leader’s vision. 4. Collective ownership:

All code is collectively owned. Schedules and responsibilities

are set such that every team member has a chance to

contribute to every subsystem and is free to work across

subsystems as needed.”

Martin E. Nordberg III, Managing Code Ownership, IEEE

Software, March 2003.391

391DOI: 10.1109/MS.2003.1184163

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1184163

2003 525

“The initial modeling activity is a structural decomposition

that continues toward the existing components’ granularity

level. Iteration will occur through alternate decomposition

and composition activities until the specifications of abstract

modules agree with existing components.”

Ali H. Dogru, Murat M. Tanik, A Process Model for

Component-Oriented Software Engineering, IEEE Software,

March 2003.392

392DOI: 10.1109/MS.2003.1184164

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1184164

2003 526

“Tata Consultancy Services blended Six Sigma concepts with

the various SW-CMM Key Process Areas into a quality

management system that has helped it to improve its

customer focus and sustain the process improvement

initiatives by explicitly linking them to business goals.”

Mala Murugappan, Gargi Keeni, Blending CMM and Six Sigma

to Meet Business Goals, IEEE Software, March 2003.393

393DOI: 10.1109/MS.2003.1184165

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1184165

2003 527

“In manufacturing, the observed and actual number of

defects is not significantly different. In software

development, these two numbers routinely vary significantly.

“

Nancy Eickelmann, Animesh Anant, Statistical Process

Control: What You Don?t Measure Can Hurt You!, IEEE

Software, March 2003.394

394DOI: 10.1109/MS.2003.1184166

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1184166

2003 528

“Patterns are not good or bad—rather, they’re either

appropriate or not for some situations. I don’t think it’s wrong

to experiment with using a pattern when you’re unsure, but

you should be prepared to rip it out if it doesn’t contribute

enough.”

Martin Fowler, Patterns, IEEE Software, March 2003.395

395DOI: 10.1109/MS.2003.1184168

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1184168

2003 529

“Colleagues in my research group and in collaborating

institutions typically model software designs using graphical

tools such as Rational Rose, Together, and Visio. I often

witness them toiling to adjust a graph’s appearance with the

mouse or laboriously visiting each class to change a single

field’s type. This need not be so. Design models should be

composed textually, and graphs should be automatically

generated. “

Diomidis Spinellis, On the Declarative Specification of Models,

IEEE Software, March 2003.396

396DOI: 10.1109/MS.2003.1184181

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1184181

2003 530

2003 531

“The Extreme Programming methodology exudes this same

advice: Be communicative with everyone on the

team—including customers, end users, and business folks.

Consistently and doggedly strive to understand and deliver

what your customers want with the highest possible quality.

Frequently offer feedback—a one-minute manager would

never hold back until a formal appraisal cycle to give feedback

to employees. “

Laurie Williams, Guest Editor’s Introduction: The XP

Programmer–The Few-Minutes Programmer, IEEE Software,

May 2003.397

397DOI: 10.1109/MS.2003.1196315

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196315

2003 532

“ThoughtWorks introduced Extreme Programming into an

organization and successfully completed a bleeding-edge

technology project with client staff that had no previous

experience using an agiledevelopment approach. “

Jonathan Rasmusson, Introducing XP into Greenfield

Projects: Lessons Learned, IEEE Software, May 2003.398

398DOI: 10.1109/MS.2003.1196316

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196316

2003 533

“The cultural environment at a government research center

differs from the customer-centric business view.

Consequently, eight of XP’s 12 practices are seemingly

incompatible with the existing research culture. … Despite

initial awkwardness … XP can function in situations for which

it appears to be ill suited.”

William L. Kleb, William A. Wood, Exploring XP for Scientific

Research, IEEE Software, May 2003.399

399DOI: 10.1109/MS.2003.1196317

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196317

2003 534

“We can trace SQA’s roots back to the 1960s, when IBM used

the term in the context of final product testing. SQA also has

deep roots in the US Department of Defense, which created a

family of military specification standards required of all

software vendors seeking DoD contracts (the most famous of

which is probably MIL-STD 2167A). However, not all people

buy into the belief that SQA is needed or is scientific …”

Jeffrey Voas, Guest Editor’s Introduction: Assuring Software

Quality Assurance, IEEE Software, May 2003.400

400DOI: 10.1109/MS.2003.1196320

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196320

2003 535

“Statistical process control tools enable proactive software

process management. One such tool, the control chart, can

be used for managing, controlling, and improving the code

review process.”

S.K. Pillai, Alice Leslie Jacob, Statistical Process Control to

Improve Coding and Code Review, IEEE Software, May

2003.401

401DOI: 10.1109/MS.2003.1196321

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196321

2003 536

“One of the most important issues in analyzing safety-critical

systems is code verification through an inspection checklist,

whose items must be applied to the source code. The

attention given to this list will help ensure obedience to good

coding rules and represents an important factor in the design

of safety-critical systems.”

Jorge Rady de Almeida Jr., S?rgio Miranda Paz, Jo?o Batista

Camargo Jr., Bruno Abrantes Basseto, Best Practices in Code

Inspection for Safety-Critical Software, IEEE Software, May

2003.402

402DOI: 10.1109/MS.2003.1196322

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196322

2003 537

”.. Accelerate the testing of scheduled functions by triggering

them through automated tests, either by periodically

advancing the system clock or through a programmatic

event interface.”

Vaughn T. Rokosz, Long-Term Testing in a Short-Term World,

IEEE Software, May 2003.403

403DOI: 10.1109/MS.2003.1196323

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196323

2003 538

“Although rigorous measurement has become a necessity in

the software industry, many measurement programs fail to

deliver any real benefit to software managers. The required

data is often missing or invalid, or it just arrives too late.”

Jim Lawler, Barbara Kitchenham, Measurement Modeling

Technology, IEEE Software, May 2003.404

404DOI: 10.1109/MS.2003.1196324

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196324

2003 539

“That we question the hype spewing from the hype purveyors,

especially vendors. That we question the advocacy spewing

from all too many computer science researchers, who seem

to feel that research papers should ‘conceive of a concept,

advocate the concept, and scold practitioners who refuse to

use the concept.’”

Robert L. Glass, Questioning the Software Engineering

Unquestionables, IEEE Software, May 2003.405

405DOI: 10.1109/MS.2003.1196338

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1196338

2003 540

2003 541

“Despite more than 30 years’ effort to improve software

quality, companies still release programs containing

numerous errors. Many major products have thousands of

bugs. It’s not for lack of trying; all major software developers

stress software quality assurance and try to remove bugs

before release. The problem is the code’s complexity. It’s

easy to review code but fail to notice significant errors.”

David L. Parnas, Mark Lawford, Guest Editors’ Introduction:

Inspection’s Role in Software Quality Assurance, IEEE

Software, July 2003.406

406DOI: 10.1109/MS.2003.1207449

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1207449

2003 542

“Reading techniques must specifically address

delocalization–the distribution of related functionality

throughout an object-oriented system–and the fact that the

static (compile time) and dynamic (run time) views of an

object-oriented system are largely distinct.”

Marc Roper, Alastair Dunsmore, Murray Wood, Practical Code

Inspection Techniques for Object-Oriented Systems: An

Experimental Comparison, IEEE Software, July 2003.407

407DOI: 10.1109/MS.2003.1207450

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1207450

2003 543

“Principles from software inspection, use cases, and

operational profile testing are combined into the usage-based

reading technique. The goal is to provide an efficient reading

technique for software inspections, which takes the user

viewpoint on the software and the faults it might contain. The

user reads, for example, a design document guided by

prioritized use cases. An experimental evaluation shows that

the UBR method is more effective and efficient in finding

faults, critical to the user, compared to checklist-based

methods.”

Claes Wohlin, Thomas Thelin, Per Runeson, Prioritized Use

Cases as a Vehicle for Software Inspections, IEEE Software,

July 2003.408

408DOI: 10.1109/MS.2003.1207451

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1207451

2003 544

“Software inspection reduces the number of defects early in

the software life cycle. Cost savings are realized because

errors are significantly more expensive to eliminate with each

successive development phase. An important part of the

inspection process is a detailed inspection of the source code

…. Recent advances in research on static program analysis

can be used to address this aspect of software inspection.”

Paul Anderson, Tim Teitelbaum, Thomas Reps, Mark Zarins,

Tool Support for Fine-Grained Software Inspection, IEEE

Software, July 2003.409

409DOI: 10.1109/MS.2003.1207453

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1207453

2003 545

“We can divide software systems architecturally along two

broad dimensions. The first is the tarchitecture or ‘technical

architecture’ and the second is the marketecture or

‘marketing architecture.’ I refer to the traditional software

architect or chief technologist as the tarchitect and the

product-marketing manager, business manager, or program

manager responsible for the system as the marketect.”

Luke Hohmann, The Difference between Marketecture and

Tarchitecture, IEEE Software, July 2003.410

410DOI: 10.1109/MS.2003.1207454

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1207454

2003 546

“Let’s allow SE programs to hire the best-qualified

candidates regardless of whether they’ve acquired a PhD.”

Robert L. Glass, A Big Problem in Academic Software

Engineering and a Potential Outside-the-Box Solution, IEEE

Software, July 2003.411

411DOI: 10.1109/MS.2003.1207486

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1207486

2003 547

2003 548

“I think that one of an architect’s most important tasks is to

remove architecture by finding ways to eliminate

irreversibility in software designs.”

Martin Fowler, Who Needs an Architect?, IEEE Software,

September 2003.412

412DOI: 10.1109/MS.2003.1231144

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231144

2003 549

“Model-driven development is simply the notion that we can

construct a model of a system that we can then transform

into the real thing.”

Anthony N. Clark, Takao Futagami, Stephen J. Mellor, Guest

Editors’ Introduction: Model-Driven Development, IEEE

Software, September 2003.413

413DOI: 10.1109/MS.2003.1231145

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145

2003 550

“The potential benefits of using models are significantly

greater in software than in other engineering disciplines

because of the potential for a seamless link between models

and the systems they represent. Unfortunately, models have

rarely produced anticipated benefits. The key lies in

resolving pragmatic issues related to the artifacts and culture

of the previous generation of software technologies.”

Bran Selic, The Pragmatics of Model-Driven Development,

IEEE Software, September 2003.414

414DOI: 10.1109/MS.2003.1231146

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231146

2003 551

“A model is a set of statements about some system under

study. Here, statement means some expression about the

SUS that can be considered true or false (although no truth

value has to necessarily be assigned at any particular point in

time). We can use a model to describe an SUS. In this case,

we consider the model correct if all its statements are true for

the SUS. … Alternatively, we can use a model as a

specification for an SUS or a class of SUS. In this case, we

consider a specific SUS valid relative to this specification if no

statement in the model is false for the SUS. “

Ed Seidewitz, What Models Mean, IEEE Software, September

2003.415

415DOI: 10.1109/MS.2003.1231147

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231147

2003 552

“UML can be used in many formats, including presented as

text, parsed into a standardized repository, and compiled to

multiple programming languages.”

Conrad Bock, UML without Pictures, IEEE Software, September

2003.416

416DOI: 10.1109/MS.2003.1231148

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231148

2003 553

“It’s helpful to identify two separate orthogonal dimensions of

metamodeling, giving rise to two distinct forms of

instantiation. One dimension is concerned with language

definition and hence uses linguistic instantiation. The other

dimension is concerned with domain definition and thus uses

ontological instantiation. “

Colin Atkinson, Thomas K?, Model-Driven Development: A

Metamodeling Foundation, IEEE Software, September

2003.417

417DOI: 10.1109/MS.2003.1231149

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231149

2003 554

2003 555

“For most of software engineering’s history, authors have

eagerly told practitioners what they ought to be doing. But

rarely have those ‘oughts’ been predicated on what

practitioners actually are doing. … Defining the state of the

art (which I identify as theory + ‘best’ practice) is easy;

conferences, journals, and books do that for us all the time.

Yet defining the state of the practice is difficult. “

Robert L. Glass, Guest Editor’s Introduction: The State of the

Practice of Software Engineering, IEEE Software, November

2003.418

418DOI: 10.1109/MS.2003.1241361

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1241361

2003 556

“We didn’t find that any specific design method or

programming language guaranteed either a successful or

troubled project outcome. … Good quality control is the best

overall indicator of a successful project.”

Capers Jones, Variations in Software Development Practices,

IEEE Software, November 2003.419

419DOI: 10.1109/MS.2003.1241362

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1241362

2003 557

“No Indian or Japanese company has yet to make any real

global mark in widely recognized software innovation, long the

province of US and a few European software firms.”

Michael Cusumano, Bill Crandall, Alan MacCormack, Chris F.

Kemerer, Software Development Worldwide: The State of the

Practice, IEEE Software, November 2003.420

420DOI: 10.1109/MS.2003.1241363

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1241363

2003 558

“The studies confirm the widely held belief that most software

engineers don’t update most software documentation in a

timely manner. The only notable exception is documentation

types that are highly structured and easy to maintain, such

as test cases and inline comments.”

Andrew Forward, Timothy C. Lethbridge, Janice Singer, How

Software Engineers Use Documentation: The State of the

Practice, IEEE Software, November 2003.421

421DOI: 10.1109/MS.2003.1241364

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1241364

2003 559

“One of the most important things about good design is

modularity— dividing a system into separate pieces so that

you can modify one module without the changes rippling all

over the system. Early on, David Parnas observed that

modules should be arranged around system secrets, each

module hiding its secret from the other modules. Then if the

secret thing changes, you avoid a ripple effect. One of the

most common secrets to hide these days is data structures. “

Martin Fowler, Data Access Routines, IEEE Software,

November 2003.422

422DOI: 10.1109/MS.2003.1241375

http://doi.ieeecomputersociety.org/10.1109/MS.2003.1241375

2004

2004 561

2004 562

“In a criminal trial (at least in the US), the failure to follow an

established best practice in an investigation could result in an

acquittal. … the American Society for Quality’s definition

probably comes closest to what we in software development

mean when we use the term. The ASQ defines ‘best practice’

as a superior method or innovative practice that contributes

to the improved performance of an organization, usually

recognized as ‘best’ by other peer organizations.”

Warren Harrison, From the Editor: Best Practices–Who Says?,

IEEE Software, January 2004.423

423DOI: 10.1109/MS.2004.1320864

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1320864

2004 563

“‘We resolve to keep all program design documentation

complete, precise, and up to date’. - David Lorge Parnas”

Nancy Leveson, Barry Boehm, Shari Lawrence Pfleeger, Nancy

R. Mead, Elaine Weyuker, Al Davis, Watts S. Humphrey, David

Lorge Parnas, Victor R. Basili, John D. Musa, New Year’s

Resolutions for Software Quality, IEEE Software, January

2004.424

424DOI: 10.1109/MS.2004.1259165

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259165

2004 564

“When you dig into the knowledge base of experience, you find

the following seven best practices for outsourcing common

to reported successes in the literature … Never outsource a

core competency… Establish win-win conditions with your

suppliers … Nurture your relationships with your suppliers …

Measure performance as quantitatively as possible … Make

exceptional performance financially worthwhile … Treat

outsourcing as a technology transfer opportunity …”

Donald J. Reifer, Seven Hot Outsourcing Practices, IEEE

Software, January 2004.425

425DOI: 10.1109/MS.2004.1259166

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259166

2004 565

“This month, the column looks at how to ruin a software

project in just three easy steps. … (1) Don’t bother to check

if the code is doing what you think it’s doing (2) Never let go

of code … (3) Whether you are compiling, testing, creating a

release, or doing end-user product installation, do it

differently every time. … Fortunately, three simple practices

can save a project from these and other common mishaps:

version control, unit testing, and automation.”

Dave Thomas, Andy Hunt, Three Legs, No Wobble, IEEE

Software, January 2004.426

426DOI: 10.1109/MS.2004.1259177

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259177

2004 566

“The open source movement is affecting software

development products and processes. … Process integration

and the coevolution of multiple open source and proprietary

projects are still open problems.”

Clemens Szyperski, Diomidis Spinellis, Guest Editors’

Introduction: How Is Open Source Affecting Software

Development?, IEEE Software, January 2004.427

427DOI: 10.1109/MS.2004.1259204

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259204

2004 567

“Many software development methodologies are called ‘open

source.’ However simply stating that a project is open source

doesn’t precisely describe the approach used to support the

project.”

Budi Arief, Cristina Gacek, The Many Meanings of Open

Source, IEEE Software, January 2004.428

428DOI: 10.1109/MS.2004.1259206

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259206

2004 568

“Mission operators at NASA’s Jet Propulsion Laboratory use

Science Activity Planners to analyze data acquired by rovers

and direct their activities. In designing the SAP for the Mars

Exploration Rovers project, developers relied heavily on open

source components. They found that using open source

software components not only helped keep the project within

budget but also resulted in a more robust and flexible tool.”

Jeffrey S. Norris, Poul-Henning Kamp, Mission-Critical

Development with Open Source Software: Lessons Learned,

IEEE Software, January 2004.429

429DOI: 10.1109/MS.2004.1259211

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259211

2004 569

“The importance of changing the mindset in relation to the

new support paradigm implied by open-source software

(OSS) is also significant. By and large, reliance on a standard

maintenance contract isn’t an option, and bulletin boards

might be the main source of support. Thus, it is hardly

surprising that support from top management is critical. Also,

even though OSS may be available at little or no cost,

organizations should not expect maintenance and support to

be available at a lesser cost than would apply for commercial

software. Indeed, OSS represents a good opportunity for small

software companies all around the world to treat it as an

infrastructure component, like the highway or

telecommunications lines, and then use it as a bootstrap to

build a service and support business model on top.”

2004 570

Tony Kenny, Brian Fitzgerald, Developing an Information

Systems Infrastructure with Open Source Software, IEEE

Software, January 2004.430

430DOI: 10.1109/MS.2004.1259216

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259216

2004 571

“Any company dealing with OSS needs a few simple rules for

using it in product development: Control the introduction and

use of OSS; it must be explicitly authorized on a per-version

basis. Disseminate technical, managerial, and legal

information widely in your company. Systematically qualify

OSS components before integrating them.”

Christof Ebert, Michel Ruffin, Using Open Source Software in

Product Development: A Primer, IEEE Software, January

2004.431

431DOI: 10.1109/MS.2004.1259227

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259227

2004 572

“Outsourcing, overseas development, and foreign workers

displacing American ones: These are all interesting issues,

but in a sense they’re all so ‘last century.’ Or are they?”

Robert L. Glass, Sources for Software Development: A

Mugwumpish View, IEEE Software, January 2004.432

432DOI: 10.1109/MS.2004.1259286

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1259286

2004 573

2004 574

“Ubiquitous and reckless promotion by vendors, consultants,

and marketing gurus has diluted the expression return on

investment into an umbrella term that can mean anything

from profits to competitive advantage to simply ‘something

good.’ Consequently, the software community looks upon ROI

with increasing suspicion as a vague and slippery gimmick

used chiefly to make the sales pitch (invariably

unsubstantiated) for a particular product or initiative.”

John Favaro, Hakan Erdogmus, Wolfgang Strigel, Guest

Editors’ Introduction: Return on Investment, IEEE Software,

May 2004.433

433DOI: 10.1109/MS.2004.1293068

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1293068

2004 575

“You may have to reorganize so that your organizational

structure is set up to best produce the commonality and to

best take advantage of it. Your people will need some training.

You’ll need to set up new processes to make this all work, and

those processes will evolve as you get better at them. You’ll

want to collect data so that you can see if this new approach

is meeting your goal.”

Paul Clements, Klaus Schmid, G? B?ckle, Dirk Muthig, John D.

McGregor, Calculating ROI for Software Product Lines, IEEE

Software, May 2004.434

434DOI: 10.1109/MS.2004.1293069

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1293069

2004 576

“Calculating cost and benefits is a prerequisite for

investment decision making. This is just as true for SPI as for

any other investment. “

Rini van Solingen, Measuring the ROI of Software Process

Improvement, IEEE Software, May 2004.435

435DOI: 10.1109/MS.2004.1293070

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1293070

2004 577

“The last few years have seen intense scrutiny of the flawed

business premises underlying the dot-com bubble of the late

1990s. The prevailing attitude then was that software

investment could be repaid through the company’s increased

capital value in expectation of future profits. The current IT

environment is greatly changed. Not only are organizations no

longer willing to invest in software development without clear

expectations for returns, but they also demand those returns

in much less time.”

Jane Cleland-Huang, Mark Denne, The Incremental Funding

Method: Data-Driven Software Development, IEEE Software,

May 2004.436

436DOI: 10.1109/MS.2004.1293071

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1293071

2004 578

“For commercial software sold in the general marketplace,

many software-planning and design decisions are based not

only on meeting user needs but also on various marketplace

issues. Many of these issues fall into one of three standard

ROI categories: revenue, cost, and risk. “

David G. Messerschmitt, Clemens Szyperski, Marketplace

Issues in Software Planning and Design, IEEE Software, May

2004.437

437DOI: 10.1109/MS.2004.1293074

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1293074

2004 579

“The trait that I value in effective quality assurance analysts is

the ability to question what others often too readily accept.

This admirable characteristic manifests itself in three ways:

know what you know, ask when you don’t, and ask when you

do.”

Jane Huffman Hayes, On the Virtues of Not Knowing, IEEE

Software, May 2004.438

438DOI: 10.1109/MS.2004.1293076

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1293076

2004 580

“Keep it DRY, keep it shy, and tell the other guy.”

Andy Hunt, Dave Thomas, OO in One Sentence: Keep It DRY,

Shy, and Tell the Other Guy, IEEE Software, May 2004.439

439DOI: 10.1109/MS.2004.1293081

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1293081

2004 581

“Software maintenance and software maintainers deserve

more respect.”

Robert L. Glass, Learning to Distinguish a Solution from a

Problem, IEEE Software, May 2004.440

440DOI: 10.1109/MS.2004.1293084

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1293084

2004 582

2004 583

“Although using professional programmers doesn’t guarantee

correctness, security, or maintainability, the lack of real

understanding about software development by end-user

programmers poses a danger to stakeholders associated with

mission-critical systems from the standpoints of both

correctness and security.”

Warren Harrison, From the Editor: The Dangers of End-User

Programming, IEEE Software, July 2004.441

441DOI: 10.1109/MS.2004.13

http://doi.ieeecomputersociety.org/10.1109/MS.2004.13

2004 584

“Evaluating process maturity on the basis of results, or the

improvement in cost structure in the four quality-cost

categories: prevention, appraisal, internal failures, and

external failures.”

Nancy Eickelmann, Measuring Maturity Goes beyond Process,

IEEE Software, July 2004.442

442DOI: 10.1109/MS.2004.21

http://doi.ieeecomputersociety.org/10.1109/MS.2004.21

2004 585

“The activity of ‘design’ includes many things, but certainly

one of the most important aspects is interface specification.

… Make interfaces easy to use correctly and hard to use

incorrectly.”

Scott Meyers, The Most Important Design Guideline?, IEEE

Software, July 2004.443

443DOI: 10.1109/MS.2004.29

http://doi.ieeecomputersociety.org/10.1109/MS.2004.29

2004 586

“From Chile to Sweden to Georgia to Hong Kong, for very

small teams to large organizations, for basic repeatability to

complex technology, the question is the same: Why isn’t

process change easier? … each part of an organization’s staff

must share the values of process change to succeed.

Company leadership must have a vision of the benefit.

Development teams must see the value. Process engineers

must recognize that the change will be both interactive and

iterative.”

Annie Combelles, David Dorenbos, Introduction: Lessons

Learned around the World: Key Success Factors to Enable

Process Change, IEEE Software, July 2004.444

444DOI: 10.1109/MS.2004.19

http://doi.ieeecomputersociety.org/10.1109/MS.2004.19

2004 587

“Traditional approaches to measuring software process

improvement are typically lengthy, data intensive, and cost

prohibitive. A simple indicator, the extent to which

engineering practices change, can provide enough

information to guide initiatives toward success.”

Lars Mathiassen, Anna B?rjesson, Successful Process

Implementation, IEEE Software, July 2004.445

445DOI: 10.1109/MS.2004.27

http://doi.ieeecomputersociety.org/10.1109/MS.2004.27

2004 588

“Failures, faults, and errors are often collectively referred to

as defects, and defect handling deals with recording,

tracking, and resolving these defects. “

Günes Koru, Jeff Tian, Defect Handling in Medium and Large

Open Source Projects, IEEE Software, July 2004.446

446DOI: 10.1109/MS.2004.12

http://doi.ieeecomputersociety.org/10.1109/MS.2004.12

2004 589

“Incremental change activities include: change request,

concept extraction, concept location, impact analysis,

actualization, incorporation, change propagation, refactoring,

and role splitting …”

Prashant Gosavi, V?clav Rajlich, Incremental Change in

Object-Oriented Programming, IEEE Software, July 2004.447

447DOI: 10.1109/MS.2004.17

http://doi.ieeecomputersociety.org/10.1109/MS.2004.17

2004 590

“We software engineers have engaged in a rush to

standardization, a rush to getting everyone to use the same

set of facts and principles.”

Robert L. Glass, Some Heresy Regarding Software

Engineering, IEEE Software, July 2004.448

448DOI: 10.1109/MS.2004.26

http://doi.ieeecomputersociety.org/10.1109/MS.2004.26

2004 591

2004 592

“There’s a simple technique that will dramatically reduce the

number of these bugs in your software. … The technique is to

build your software to ‘fail fast.’”

Jim Shore, Fail Fast, IEEE Software, September 2004.449

449DOI: 10.1109/MS.2004.1331296

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331296

2004 593

“Core business principles refer to those practices that a

company, institution, or government agency uses to enable

the organization’s viability. Whether Web services, supply

chain, payroll, timesheets, or other application, there must be

a relationship between your organization’s core business

principles and how its software’s functionality is defined,

developed, deployed, tested, and maintained.”

Jeffrey Voas, Software Engineering’s Role in Business, IEEE

Software, September 2004.450

450DOI: 10.1109/MS.2004.1331297

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331297

2004 594

“Poor performers cause much more damage than is apparent

to management. “

Shahrukh A. Irani, Ho Woo Lee, Peter Middleton, Why Culling

Software Colleagues Is Popular, IEEE Software, September

2004.451

451DOI: 10.1109/MS.2004.1331298

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331298

2004 595

“Software systems are the only major organizational asset

with no real support for managing them based on information

technology. … no one keeps any basic information

concerning a vastly expensive corporate asset.”

Garry S. Marliss, Mordechai Ben-Menachem, Inventorying

Information Technology Systems: Supporting the ‘Paradigm

of Change’, IEEE Software, September 2004.452

452DOI: 10.1109/MS.2004.1331300

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331300

2004 596

“Network effects can lead to a ‘social dilemma,’ in which the

actions of consumers can result in serious negative

consequences for the same consumers and the society as a

whole in the long term. “

Nirup M. Menon, Glenn J. Browne, Network Effects and Social

Dilemmas in Technology Industries, IEEE Software,

September 2004.453

453DOI: 10.1109/MS.2004.1331301

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331301

2004 597

“The well-known black-box model of software development

outsourcing is typically effective. The approach assumes that

the vendor can successfully solve a client organization’s

business problem without either organization having to deeply

understand the other’s domain. … key finding is that the

black-box approach usually works well in routine projects but

fails in projects involving novelty.”

Amrit Tiwana, Beyond the Black Box: Knowledge Overlaps in

Software Outsourcing, IEEE Software, September 2004.454

454DOI: 10.1109/MS.2004.1331302

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331302

2004 598

“The international standard ISO/IEC 9126 defines a quality

model for software products. The model categorizes software

product attributes into six characteristics, which are further

subdivided into 27 subcharacteristics.”

Ho-Won Jung, Seung-Gweon Kim, Chang-Shin Chung,

Measuring Software Product Quality: A Survey of ISO/IEC

9126, IEEE Software, September 2004.455

455DOI: 10.1109/MS.2004.1331309

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331309

2004 599

“As an industry, we love to build the grand frameworks that

can solve all the world’s problems in one unified package. “

Andy Hunt, Dave Thomas, Imaginate, IEEE Software,

September 2004.456

456DOI: 10.1109/MS.2004.1331311

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331311

2004 600

“Phillips suggests that ‘when we are behind schedule and

under pressure, we stop breathing.’ And that, in turn, leads to

some pretty bad outcomes…”

Robert L. Glass, Anarchy and the Effects of Schedule

Pressure, IEEE Software, September 2004.457

457DOI: 10.1109/MS.2004.1331316

http://doi.ieeecomputersociety.org/10.1109/MS.2004.1331316

2004 601

2004 602

“Software changes are a lot like rain. While a few drops here

and there usually aren’t that much of a problem, a steady

downpour can be damaging—and a deluge can wipe out

everything you’ve carefully built. “

Maarten Boasson, Terry Bollinger, Jeffrey Voas, Persistent

Software Attributes, IEEE Software, November 2004.458

458DOI: 10.1109/MS.2004.46

http://doi.ieeecomputersociety.org/10.1109/MS.2004.46

2004 603

“In contemporary societies, individuals and organizations

increasingly depend on services delivered by sophisticated

software-intensive systems. Dependability has become a key

systems property, which needs to be engineered and

guaranteed regardless of continuous, rapid, and

unpredictable technological and context changes.”

Paolo Donzelli, Victor Basili, Sima Asgari, A Unified Model of

Dependability: Capturing Dependability in Context, IEEE

Software, November 2004.459

459DOI: 10.1109/MS.2004.30

http://doi.ieeecomputersociety.org/10.1109/MS.2004.30

2004 604

“If you don’t carefully and accurately manage customizations

… the result can be skyrocketing development costs, poor

customer support, and an inability to respond quickly to new

needs.”

Sonia Calzada, Ismael Ciordia, Fernando Alonso, Nicol?

Serrano, Automated Management of Multicustomer Code

Bases, IEEE Software, November 2004.460

460DOI: 10.1109/MS.2004.35

http://doi.ieeecomputersociety.org/10.1109/MS.2004.35

2004 605

“If developers are willing to work hard and carefully

introduce an agile process into their organization, their

efforts should yield positive results.”

David Noftz, Rekha Raghu, Jerry Drobka, Piloting XP on Four

Mission-Critical Projects, IEEE Software, November 2004.461

461DOI: 10.1109/MS.2004.47

http://doi.ieeecomputersociety.org/10.1109/MS.2004.47

2004 606

“Routine tasks are the easiest ones for programmers to

avoid. So, to develop a single program—even a program with

only one file — it’s common to have a script that compiles it

with the desired options and executes it with some

arguments. When your project has hundreds or thousands of

files and a large team of developers, the script isn’t a utility,

but a necessity; it becomes even more critical when the

project’s structures are complicated and the dependencies are

hard to remember.”

Ismael Ciordia, Nicol? Serrano, Ant: Automating the Process

of Building Applications, IEEE Software, November 2004.462

462DOI: 10.1109/MS.2004.33

http://doi.ieeecomputersociety.org/10.1109/MS.2004.33

2004 607

“Many software projects involve at least one stakeholder who

secretly wants the project to fail. Finding this stakeholder can

be difficult but is important to ensuring the project’s success.”

Johann Rost, Political Reasons for Failed Software Projects,

IEEE Software, November 2004.463

463DOI: 10.1109/MS.2004.48

http://doi.ieeecomputersociety.org/10.1109/MS.2004.48

2005

2005 609

2005 610

“In many domains, the problem space is too large to explore

up front. Expert designers often explore the problem and

solution spaces in parallel, using the emerging solution space

to decide what information to elicit next about the problem

space. They also often look for chinks—that is, omissions and

inconsistencies—in problems and requirement specifications

that would enable them to discover more innovative

solutions.”

Neil Maiden, Christof Ebert, Suzanne Robertson, Guest Editors’

Introduction: Shake, Rattle, and Requirements, IEEE

Software, January 2005.464

464DOI: 10.1109/MS.2005.8

http://doi.ieeecomputersociety.org/10.1109/MS.2005.8

2005 611

“Some activities are fundamental to all RE requirements

engineering processes: Elicitation. Identify sources of

information … Analysis. Understand the requirements …

Validation. Go back to the system stakeholders and check …

Negotiation. … reconcile conflicting views ….

Documentation. Write down the requirements …

Management. Control the requirements changes … “

Ian Sommerville, Integrated Requirements Engineering: A

Tutorial, IEEE Software, January 2005.465

465DOI: 10.1109/MS.2005.13

http://doi.ieeecomputersociety.org/10.1109/MS.2005.13

2005 612

“Patterns are an established and well-known format for

capturing engineering knowledge. … practitioners use

patterns to describe reference solutions to engineering

problems and as guidelines for engineering procedures”

Lars Hagge, Kathrin Lappe, Sharing Requirements

Engineering Experience Using Patterns, IEEE Software,

January 2005.466

466DOI: 10.1109/MS.2005.17

http://doi.ieeecomputersociety.org/10.1109/MS.2005.17

2005 613

“The development of large, complex software products aimed

for a broad market involves a continuous, massive inflow of

customers’ wishes (collected from the market) and product

requirements (generated inside the developing

organization). “

Johan Natt och Dag, Sjaak Brinkkemper, Bj? Regnell, Vincenzo

Gervasi, A Linguistic-Engineering Approach to Large-Scale

Requirements Management, IEEE Software, January 2005.467

467DOI: 10.1109/MS.2005.1

http://doi.ieeecomputersociety.org/10.1109/MS.2005.1

2005 614

“Producing good systems relies on asking ‘the right

questions’ to discover users’ real requirements. Family

therapy provides interview techniques and different types of

questions that can generate new knowledge.”

Susanne Kandrup, On Systems Coaching, IEEE Software,

January 2005.468

468DOI: 10.1109/MS.2005.15

http://doi.ieeecomputersociety.org/10.1109/MS.2005.15

2005 615

“The word ‘all’ and the plural can be misused in ways that

create ambiguities and other problems in computer-based

system specification documents.”

Erik Kamsties, Daniel M. Berry, The Syntactically Dangerous

All and Plural in Specifications, IEEE Software, January

2005.469

469DOI: 10.1109/MS.2005.22

http://doi.ieeecomputersociety.org/10.1109/MS.2005.22

2005 616

“We like to think of science with certainty, where results are

clear when rules are understood and followed. But science is

rife with uncertainty, and we must acknowledge its role and

the resulting risks we take, both when we generate evidence

and when we use it to build arguments. Lawyers recognize

the uncertainty associated with various types of evidence, so

they look for pieces of evidence that in concert have more

‘evidential force’ than when used separately. “

Jason Remillard, Source Code Review Systems, IEEE Software,

January 2005.470

470DOI: 10.1109/MS.2005.20

http://doi.ieeecomputersociety.org/10.1109/MS.2005.20

2005 617

“So there you have it. I’m mad as hell, I don’t want to take

this anymore, and I suppose the truth of the matter is that I

can’t do anything about it!”

Robert L. Glass, Viruses Are Beginning to Get to Me!, IEEE

Software, January 2005.471

471DOI: 10.1109/MS.2005.24

http://doi.ieeecomputersociety.org/10.1109/MS.2005.24

2005 618

2005 619

“Bug-tracking systems help us identify the error in our

software, resolve it, and learn from it.”

Ismael Ciordia, Nicol? Serrano, Bugzilla, ITracker, and Other

Bug Trackers, IEEE Software, March 2005.472

472DOI: 10.1109/MS.2005.32

http://doi.ieeecomputersociety.org/10.1109/MS.2005.32

2005 620

“Any bold advance needs some time to mature—to ‘cross the

chasm,’ as Geoffrey Moore eloquently described, to get a

critical mass of practitioners across our industry beyond the

eager early-adopter stage. Techniques, practices, and

methods must be taught in schools and must be supported by

tools. They must prove their value beyond any reasonable

doubt and sometimes even be enshrined in some industry

standard.”

Philippe Kruchten, Editor’s Introduction: Software Design in a

Postmodern Era, IEEE Software, March 2005.473

473DOI: 10.1109/MS.2005.38

http://doi.ieeecomputersociety.org/10.1109/MS.2005.38

2005 621

“Explicitly documenting major architecture decisions makes

the architecture development process more structured and

transparent. Additionally, it clarifies the architects’ rationale

for stakeholders, designers, and other architects.”

Art Akerman, Jeff Tyree, Architecture Decisions: Demystifying

Architecture, IEEE Software, March 2005.474

474DOI: 10.1109/MS.2005.27

http://doi.ieeecomputersociety.org/10.1109/MS.2005.27

2005 622

“Elements such as principles, heuristics, best practices, ‘bad

smells,’ and refactorings are not clearly defined. Many of

these elements are synonymous, and others are just vague

concepts.”

Mario Piattini, Javier Garz?, An Ontology for

Microarchitectural Design Knowledge, IEEE Software, March

2005.475

475DOI: 10.1109/MS.2005.26

http://doi.ieeecomputersociety.org/10.1109/MS.2005.26

2005 623

“Architecture reviews… identify project problems before

they become costly to fix and provide timely information to

upper management so that they can make better-informed

decisions.”

David M. Weiss, Sandra A. Rozsypal, Joseph F. Maranzano, Gus

H. Zimmerman, Guy W. Warnken, Patricia E. Wirth,

Architecture Reviews: Practice and Experience, IEEE

Software, March 2005.476

476DOI: 10.1109/MS.2005.28

http://doi.ieeecomputersociety.org/10.1109/MS.2005.28

2005 624

“One of the key issues in Model Driven Architecture is model

mapping–that is, the transformation of models from one

formalism to another.”

Jean-Louis Sourrouille, Guy Caplat, Model Mapping Using

Formalism Extensions, IEEE Software, March 2005.477

477DOI: 10.1109/MS.2005.45

http://doi.ieeecomputersociety.org/10.1109/MS.2005.45

2005 625

“Software engineers use certain common terms, such as

design, analysis, and documentation, in significantly different

ways from other engineers. … ‘design’ in software

engineering is more limited in scope than in other fields.”

Philippe Kruchten, Casting Software Design in the

Function-Behavior-Structure Framework, IEEE Software,

March 2005.478

478DOI: 10.1109/MS.2005.33

http://doi.ieeecomputersociety.org/10.1109/MS.2005.33

2005 626

“You know you’re a geek when going to the coffee shop gets

you thinking about interaction patterns between loosely

coupled systems. … Interestingly, the optimization for

throughput results in a concurrent and asynchronous

processing model: when you place your order, the cashier

marks a coffee cup with your order and places it into a queue.

“

Gregor Hohpe, Your Coffee Shop Doesn’t Use Two-Phase

Commit, IEEE Software, March 2005.479

479DOI: 10.1109/MS.2005.52

http://doi.ieeecomputersociety.org/10.1109/MS.2005.52

2005 627

2005 628

“Agile programming is design for change, without refactoring

and rebuilding.”

Dave Thomas, Agile Programming: Design to Accommodate

Change, IEEE Software, May 2005.480

480DOI: 10.1109/MS.2005.54

http://doi.ieeecomputersociety.org/10.1109/MS.2005.54

2005 629

“Kent Beck wrote eXtreme Programming eXplained… but

the book has also caused an extraordinary degree of vitriol. …

The reasons appear to include a focus on writing programs

rather than analysis or design (also known as modeling); a

disdain for documentation as such; and the Communist

notion of working only 40 hours a week.”

Stephen J. Mellor, Editor’s Introduction: Adapting Agile

Approaches to Your Project Needs, IEEE Software, May

2005.481

481DOI: 10.1109/MS.2005.61

http://doi.ieeecomputersociety.org/10.1109/MS.2005.61

2005 630

“People have claimed that plan-based and agile companies

use very different project management techniques. …

managers using agile methods focus on people and process

more than other managers. … adopting agile methods

appears to offer a good solution for improving the

management of the development process and customer

relationships.”

Stefano De Panfilis, Alberto Sillitti, Martina Ceschi, Giancarlo

Succi, Project Management in Plan-Based and Agile

Companies, IEEE Software, May 2005.482

482DOI: 10.1109/MS.2005.75

http://doi.ieeecomputersociety.org/10.1109/MS.2005.75

2005 631

“We categorize projects into dogs (simple projects with low

uncertainty), colts (simple projects with high uncertainty),

cows (complex projects with low uncertainty), or bulls

(complex projects with high uncertainty). We adapt our agile

process by adding practices according to a project’s profile.”

Todd Little, Context-Adaptive Agility: Managing Complexity

and Uncertainty, IEEE Software, May 2005.483

483DOI: 10.1109/MS.2005.60

http://doi.ieeecomputersociety.org/10.1109/MS.2005.60

2005 632

“Requirements engineers must … view requirements as a

sociotechnical discipline and draw skills, techniques, and

knowledge from other disciplines.”

Suzanne Robertson, Learning from Other Disciplines, IEEE

Software, May 2005.484

484DOI: 10.1109/MS.2005.68

http://doi.ieeecomputersociety.org/10.1109/MS.2005.68

2005 633

“One of the most robust findings in forecasting, human

judgment, and software estimation studies is that

‘combination works.’ Apparently it doesn’t matter whether

the combination involves a simple average of estimates from

different methods or a sophisticated weighting algorithm. A

simple average offers a robust combination method unless

one estimation method or expert is obviously more reliable

than another. … An expert’s technical skill level can be a poor

indicator of accuracy, and it’s rarely obvious, in advance,

which expert will be the better estimator. This is one reason a

simple average of outputs from different estimation experts

and methods frequently offers the most robust and accurate

combination method.”

2005 634

Magne Jørgensen, Practical Guidelines for

Expert-Judgment-Based Software Effort Estimation, IEEE

Software, May 2005.485

485DOI: 10.1109/MS.2005.73

http://doi.ieeecomputersociety.org/10.1109/MS.2005.73

2005 635

“Text mining is a relatively new research area associated with

the creation of novel information resources from electronic

text repositories. An expert-witness database based on text

from legal, medical, and news documents demonstrates the

successful application of text-mining techniques.”

Christopher Dozier, Peter Jackson, Mining Text for Expert

Witnesses, IEEE Software, May 2005.486

486DOI: 10.1109/MS.2005.70

http://doi.ieeecomputersociety.org/10.1109/MS.2005.70

2005 636

“It’s difficult to have a problem with anything Martin Fowler

writes. He’s obviously a skilled designer, he practices what he

preaches, and he has a forceful command of the English

language without being stuffy. “

Stephen Mellor, Christof Ebert, Fernando Berzal, UML Distilled:

From Difficulties to Assets, IEEE Software, May 2005.487

487DOI: 10.1109/MS.2005.81

http://doi.ieeecomputersociety.org/10.1109/MS.2005.81

2005 637

“I want to question the unquestionable status of that

Standish report. That’s because, you see, my own

observations lead me to believe that something is terribly

wrong with those Standish findings.”

Robert L. Glass, IT Failure Rates - 70% or 10-15%?, IEEE

Software, May 2005.488

488DOI: 10.1109/MS.2005.66

http://doi.ieeecomputersociety.org/10.1109/MS.2005.66

2005 638

2005 639

“Writing stand-alone tools that you can combine efficiently

with others to handle more demanding tasks appears to be

becoming a forgotten art.”

Diomidis Spinellis, Tool Writing: A Forgotten Art?, IEEE

Software, July 2005.489

489DOI: 10.1109/MS.2005.111

http://doi.ieeecomputersociety.org/10.1109/MS.2005.111

2005 640

“JUnit is an open source Java library that purports to make

unit testing so much fun that programmers will actually want

to write tests for their code.”

Panagiotis Louridas, JUnit: Unit Testing and Coding in

Tandem, IEEE Software, July 2005.490

490DOI: 10.1109/MS.2005.100

http://doi.ieeecomputersociety.org/10.1109/MS.2005.100

2005 641

“One strategy that originally seemed promising was the

notion of ‘buy not build.’ Using COTS products is one way to

implement this strategy, because software development then

becomes the process of ‘simply’ integrating COTS

components. However, it turns out that dealing with COTS is a

high-risk activity …”

Alexander Egyed, Dewayne E. Perry, Hausi A. Muller, Guest

Editors’ Introduction: Integrating COTS into the Development

Process, IEEE Software, July 2005.491

491DOI: 10.1109/MS.2005.93

http://doi.ieeecomputersociety.org/10.1109/MS.2005.93

2005 642

“The availability of the components before the system is built

provides early data on their performance properties.”

Murray Woodside, Xiuping Wu, Erik Putrycz, Performance

Techniques for COTS Systems, IEEE Software, July 2005.492

492DOI: 10.1109/MS.2005.102

http://doi.ieeecomputersociety.org/10.1109/MS.2005.102

2005 643

“What’s the state of the practice of software engineering? If

you look at current software engineering books, journals, and

conferences, you won’t find much of an answer.”

Robert L. Glass, A Sad SAC Story about the State of the

Practice, IEEE Software, July 2005.493

493DOI: 10.1109/MS.2005.82

http://doi.ieeecomputersociety.org/10.1109/MS.2005.82

2005 644

2005 645

“Twenty years is a very long time in the computing field. Yet,

SEPM (Software Engineering Projects Management)’s

progress has been agonizingly slow in many ways, probably

because it’s driven more by human behavior than by

technology. People change their behavior much more slowly

than technology advances.”

Arthur B. Pyster, Richard H. Thayer, Guest Editors’

Introduction: Software Engineering Project Management 20

Years Later, IEEE Software, September 2005.494

494DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2005.137

https://doi.ieeecomputersociety.org/10.1109/MS.2005.137

2005 646

“Because we must balance the enterprise architect’s goals

with the needs of the agile development organization and the

users driving the application’s development, it helps to have

enterprise architects join the development team. This

provides opportunities to address the needs of all

stakeholders: architects, developers, and business users.”

Rebecca J. Parsons, Enterprise Architects Join the Team, IEEE

Software, September 2005.495

495DOI: 10.1109/MS.2005.119

http://doi.ieeecomputersociety.org/10.1109/MS.2005.119

2005 647

“Twenty years is a very long time in the computing field. Yet,

SEPM’s software engineering project management progress

has been agonizingly slow in many ways, probably because

it’s driven more by human behavior than by technology.

People change their behavior much more slowly than

technology advances. “

Arthur B. Pyster, Richard H. Thayer, Guest Editors’

Introduction: Software Engineering Project Management 20

Years Later, IEEE Software, September 2005.496

496DOI: 10.1109/MS.2005.137

http://doi.ieeecomputersociety.org/10.1109/MS.2005.137

2005 648

“Our discussions with traditional developers and managers

concerning agile software development practices nearly

always contain two somewhat contradictory ideas. They find

that on small, stand-alone projects, agile practices are less

burdensome and more in tune with the software industry’s

increasing needs for rapid development and coping with

continuous change. However, they’re frustrated with the

difficulty of scaling up and integrating them into traditional,

top-down systems development organizations.”

Richard Turner, Barry Boehm, Management Challenges to

Implementing Agile Processes in Traditional Development

Organizations, IEEE Software, September 2005.497

497DOI: 10.1109/MS.2005.129

http://doi.ieeecomputersociety.org/10.1109/MS.2005.129

2005 649

“Use a steering leadership style rather than the detailed

plan-and-track leadership style encouraged by conventional

wisdom.”

Walker Royce, Successful Software Management Style:

Steering and Balance, IEEE Software, September 2005.498

498DOI: 10.1109/MS.2005.138

http://doi.ieeecomputersociety.org/10.1109/MS.2005.138

2005 650

“An enormous intellectual distance exists between the fields

of computer science and information systems, which needs

to be fixed soon.”

Robert L. Glass, Never the CS and IS Twain Shall Meet?, IEEE

Software, September 2005.499

499DOI: 10.1109/MS.2005.130

http://doi.ieeecomputersociety.org/10.1109/MS.2005.130

2005 651

2005 652

“Software engineering is a decision-intensive discipline. It

still struggles with basic questions regarding the utility of

models. Can researchers help software practitioners by

building models that make explicit the knowledge hidden in

various software resources?”

Bojan Cukic, Guest Editor’s Introduction: The Promise of

Public Software Engineering Data Repositories, IEEE

Software, November 2005.500

500DOI: 10.1109/MS.2005.153

http://doi.ieeecomputersociety.org/10.1109/MS.2005.153

2005 653

“The ‘art of release planning’ refers to relying on human

intuition, communication, and capabilities to negotiate

between conflicting objectives and constraints. The ‘science

of release planning’ refers to formalizing the problem and

applying computational algorithms to generate best

solutions.”

G?nther Ruhe, Moshood Omolade Saliu, The Art and Science

of Software Release Planning, IEEE Software, November

2005.501

501DOI: 10.1109/MS.2005.164

http://doi.ieeecomputersociety.org/10.1109/MS.2005.164

2005 654

“The field of software engineering would greatly benefit from

detailed research on why some software builders perform

better than others, but this isn’t happening.”

Robert L. Glass, A Follow-the-Leader Story with a Strange

Ending, IEEE Software, November 2005.502

502DOI: 10.1109/MS.2005.144

http://doi.ieeecomputersociety.org/10.1109/MS.2005.144

2006

2006 656

2006 657

“Although design is a highly creative activity, we can still learn

fundamental design skills - and accomplish a lot with them.”

Rebecca J. Wirfs-Brock, Looking for Powerful Abstractions,

IEEE Software, January 2006.503

503DOI: 10.1109/MS.2006.22

http://doi.ieeecomputersociety.org/10.1109/MS.2006.22

2006 658

“Basili’s contributions cover three broad areas: research in

the 1970s and early 1980s on software measurement and

the Goal Question Metric (GQM) model, research in the 1980s

and 1990s on these measurement ideas’ maturation into a

software engineering model of empirical studies, including the

development of the Quality Improvement Paradigm (QIP)

and the influence of the NASA Goddard Space Flight Center

Software Engineering Laboratory, and research since 1990 in

the Experience Factory as a model for creating learning

organizations for continuous software process improvement.”

Marvin Zelkowitz, Carolyn Seaman, Forrest Shull, Victor R.

Basili’s Contributions to Software Quality, IEEE Software,

January 2006.504

504DOI: 10.1109/MS.2006.33

http://doi.ieeecomputersociety.org/10.1109/MS.2006.33

2006 659

“Aspect-oriented programming technologies aim to improve

system modularity by modularizing crosscutting concerns.

Global properties and programming and design issues can

lead to crosscutting concerns–for example, error handling or

transaction code, interacting features, and reliability and

security. “

Christa Schwanninger, Gail Murphy, Guest Editors’

Introduction: Aspect-Oriented Programming, IEEE Software,

January 2006.505

505DOI: 10.1109/MS.2006.12

http://doi.ieeecomputersociety.org/10.1109/MS.2006.12

2006 660

“Service-oriented architectures are designed to support

loose coupling between interacting software applications.

Using Web services technology, SOAs support the creation of

distributed applications in a heterogeneous environment.”

Viviane Jonckers, Bart Verheecke, Wim Vanderperren,

Unraveling Crosscutting Concerns in Web Services

Middleware, IEEE Software, January 2006.506

506DOI: 10.1109/MS.2006.31

http://doi.ieeecomputersociety.org/10.1109/MS.2006.31

2006 661

“Aspect-oriented programming languages such as AspectJ

offer new mechanisms for decomposing systems into modules

and composing modules into systems. Common ways of using

these mechanisms couple aspects to complex, changeable

implementation details, which can compromise modularity. “

Macneil Shonle, Yuanfang Cai, Hridesh Rajan, Nishit Tewari,

William G. Griswold, Yuanyuan Song, Kevin Sullivan, Modular

Software Design with Crosscutting Interfaces, IEEE Software,

January 2006.507

507DOI: 10.1109/MS.2006.24

http://doi.ieeecomputersociety.org/10.1109/MS.2006.24

2006 662

“Aspects are evident earlier in the life cycle, such as during

requirements gathering and architecture development.

Identifying these early aspects ensures that you can

appropriately capture aspects related to the problem domain

(as opposed to merely the implementation).”

Awais Rashid, Joao Araújo, Paul C. Clements, Ana Moreira,

Elisa Baniassad, Bedir Tekinerdogan, Discovering Early

Aspects, IEEE Software, January 2006.508

508DOI: 10.1109/MS.2006.8

http://doi.ieeecomputersociety.org/10.1109/MS.2006.8

2006 663

“There’s a subtle way to lose your integrity: trying to do a

task as someone else would have you do it, rather than as you

believe it should be done.”

Robert L. Glass, Of Health, Trust, Money … and Integrity, IEEE

Software, January 2006.509

509DOI: 10.1109/MS.2006.25

http://doi.ieeecomputersociety.org/10.1109/MS.2006.25

2006 664

2006 665

“The service-oriented paradigm is founded on an assumption

of well-specified and well-understood contracts that isn’t

realized in practice.”

Brian A. Malloy, Jeffrey M. Voas, Jason O. Hallstrom, Nicholas

A. Kraft, Improving the Predictable Assembly of

Service-Oriented Architectures, IEEE Software, March

2006.510

510DOI: 10.1109/MS.2006.49

http://doi.ieeecomputersociety.org/10.1109/MS.2006.49

2006 666

“By studying … architectural patterns and thus exposing …

systems’ inner beauty, I hope to inspire developers who want

to build on the experience of other well-engineered systems.”

Grady Booch, On Architecture, IEEE Software, March 2006.511

511DOI: 10.1109/MS.2006.52

http://doi.ieeecomputersociety.org/10.1109/MS.2006.52

2006 667

“Project teams can improve requirements just by making

several easy steps, including defining mission and scope;

identifying stakeholders, goals, and goal conflicts; describing

scenarios, requirements, justifications, and assumptions;

and agreeing on priorities and acceptance criteria.”

Ian Alexander, 10 Small Steps to Better Requirements, IEEE

Software, March 2006.512

512DOI: 10.1109/MS.2006.34

http://doi.ieeecomputersociety.org/10.1109/MS.2006.34

2006 668

“It’s been 10 years since David Garlan and Mary Shaw wrote

their seminal book Software Architecture Perspective on an

Emerging Discipline, since Maarten Boasson edited a special

issue of IEEE Software on software architecture, and since

the first International Software Architecture Workshop took

place. What has happened over these 10 years? What have we

learned? Where do we look for information? What’s the

community around this discipline? And where are we going

from here?”

Philippe Kruchten, Henk Obbink, Judith Stafford, The Past,

Present, and Future for Software Architecture, IEEE Software,

March 2006.513

513DOI: 10.1109/MS.2006.59

http://doi.ieeecomputersociety.org/10.1109/MS.2006.59

2006 669

“In the near future, software architecture will attain the

status of all truly successful technologies: It will be taken for

granted.”

Paul Clements, Mary Shaw, The Golden Age of Software

Architecture, IEEE Software, March 2006.514

514DOI: 10.1109/MS.2006.58

http://doi.ieeecomputersociety.org/10.1109/MS.2006.58

2006 670

“UML has been around since 1997. … UML is used rather

loosely and that UML models are often incomplete. This leads

to miscommunication and other implementation and

maintenance problems.”

Michel Chaudron, Johan Muskens, Christian Lange, In Practice:

UML Software Architecture and Design Description, IEEE

Software, March 2006.515

515DOI: 10.1109/MS.2006.50

http://doi.ieeecomputersociety.org/10.1109/MS.2006.50

2006 671

“Including architecture-centric design and analysis methods

in the Extreme Programming framework can help software

developers address quality attributes in an explicit,

methodical, engineering-principled way.”

Robert L. Nord, James E. Tomayko, Software

Architecture-Centric Methods and Agile Development, IEEE

Software, March 2006.516

516DOI: 10.1109/MS.2006.54

http://doi.ieeecomputersociety.org/10.1109/MS.2006.54

2006 672

“Service-Oriented Architecture (SOA) represents a paradigm

consisting of a set of architectural principles for building

loosely coupled software systems. Actually, the SOA

paradigm applies not only to XML Web services but also to

other technologies such as email clients and servers and

message-oriented middleware.”

Michael Stal, Using Architectural Patterns and Blueprints for

Service-Oriented Architecture, IEEE Software, March 2006.517

517DOI: 10.1109/MS.2006.60

http://doi.ieeecomputersociety.org/10.1109/MS.2006.60

2006 673

“Wikis have become one of the most popular tool shells. You

can find them just about everywhere that demands effective

collaboration and knowledge sharing at a low budget.

Wikipedia has certainly enhanced their popularity, but they

also have a place in intranet-based applications such as

defect tracking, requirements management, test-case

management, and project portals.”

Panagiotis Louridas, Using Wikis in Software Development,

IEEE Software, March 2006.518

518DOI: 10.1109/MS.2006.62

http://doi.ieeecomputersociety.org/10.1109/MS.2006.62

2006 674

“One way to deal with bugs is to avoid them entirely through

stringent quality control. To conserve our valuable resources,

we can use tools to catch the bugs before they end-up in

production code. We can use type-safe languages, pay

attention to compiler warnings, adopt specialized

bug-finding tools, or we can adjust our code to make it locate

bugs during testing.”

Diomidis Spinellis, Bug Busters, IEEE Software, March 2006.519

519DOI: 10.1109/MS.2006.40

http://doi.ieeecomputersociety.org/10.1109/MS.2006.40

2006 675

2006 676

“Every interesting software-intensive system has an

architecture. While some of these architectures are

intentional, most appear to be accidental. Philippe Kruchten

has observed that ‘the life of a software architect is a long and

rapid succession of suboptimal design decisions taken partly

in the dark.’ “

Grady Booch, The Accidental Architecture, IEEE Software,

May 2006.520

520DOI: 10.1109/MS.2006.86

http://doi.ieeecomputersociety.org/10.1109/MS.2006.86

2006 677

“The ramifications of failing to completely and correctly

address security can devastate an organization, not only in

compromised data and financial cost but also in the time and

energy spent to recover.”

Jane Huffman Hayes, Nancy Eickelmann, E. Ashlee Holbrook,

Frank Perry, Security and Software Quality: An Interview with

Frank Perry, IEEE Software, May 2006.521

521DOI: 10.1109/MS.2006.83

http://doi.ieeecomputersociety.org/10.1109/MS.2006.83

2006 678

“Organizations frequently commit to requirements and

contracts to boost short-term revenues without properly

aligning sales, product management, project management,

and marketing. Such misalignment results in insufficient

capacity planning or product-development resource

allocation, thus delaying projects.”

Christof Ebert, Understanding the Product Life Cycle: Four

Key Requirements Engineering Techniques, IEEE Software,

May 2006.522

522DOI: 10.1109/MS.2006.88

http://doi.ieeecomputersociety.org/10.1109/MS.2006.88

2006 679

“Ethnographies - using video to observe users in their own

work environments–can support requirements elicitation.”

Paul Luff, Marina Jirotka, Supporting Requirements with

Video-Based Analysis, IEEE Software, May 2006.523

523DOI: 10.1109/MS.2006.84

http://doi.ieeecomputersociety.org/10.1109/MS.2006.84

2006 680

“In recent years, the software engineering community has

focused on organizing its existing knowledge and finding

opportunities to transform that knowledge into a university

curriculum. … they’ve also focused largely on SE’s

engineering aspects, at the expense of its human and social

dimensions.”

Hans van Vliet, Reflections on Software Engineering

Education, IEEE Software, May 2006.524

524DOI: 10.1109/MS.2006.80

http://doi.ieeecomputersociety.org/10.1109/MS.2006.80

2006 681

“Debuggers are cheap and effective tools. Typically we use

them in a bottom-up fashion starting from the problem going

to its source, but when this strategy fails, we might have to

resort to a more tedious top-down breadth-first search. To

locate bugs, we can also use hardware-assisted data and

code breakpoints. For bugs that are difficult to reproduce,

attaching a debugger to a running process as well as

postmortem and remote debugging are some alternatives.

Finally, we can permanently embed debugging knowledge in

a program’s source code, through logging statements.”

Diomidis Spinellis, Debuggers and Logging Frameworks, IEEE

Software, May 2006.525

525DOI: 10.1109/MS.2006.70

http://doi.ieeecomputersociety.org/10.1109/MS.2006.70

2006 682

2006 683

“‘Do you use the same password for multiple Web sites?’ …

41 percent of the respondents said they always use the same

password, 45 percent said they have a few different

passwords, and 14 percent said they never use the same

password on multiple Web sites. Those 14 percent probably

either don’t have an Internet connection or are ‘security

professionals.’ The problem is that where the ‘security

professional’ sees prudent, responsible behavior, users simply

see overhead that gets in the way of performing whatever

task they’re trying to do.”

Warren Harrison, Passwords and Passion, IEEE Software, July

2006.526

526DOI: 10.1109/MS.2006.110

http://doi.ieeecomputersociety.org/10.1109/MS.2006.110

2006 684

“When things go right, software hums along like well-oiled

machinery–receive an event, twiddle with inputs, send a flurry

of messages, change the system state, interact with the

environment or users, then wait for the next chunk of work.

Smooth. Mechanical. Predictable. But what happens when

something goes wrong? How should you design your software

to detect, react, and recover from exceptional conditions?”

Rebecca Wirfs-Brock, Designing for Recovery, IEEE Software,

July 2006.527

527DOI: 10.1109/MS.2006.98

http://doi.ieeecomputersociety.org/10.1109/MS.2006.98

2006 685

“Software development is ultimately an engineering activity,

whose primary activity is to deliver executable artifacts in a

manner that balances the forces on that system. The forces

that swirl around a software-intensive system include not only

its purely functional requirements but also a multitude of

nonfunctional ones, such as reliability, portability, and

scalability (often called a system’s -ilities).”

Grady Booch, From Small to Gargantuan, IEEE Software, July

2006.528

528DOI: 10.1109/MS.2006.102

http://doi.ieeecomputersociety.org/10.1109/MS.2006.102

2006 686

“Software testing is still one of the more neglected practices

within the software development life cycle.”

Natalia Juristo, Ana M. Moreno, Wolfgang Strigel, Guest

Editors’ Introduction: Software Testing Practices in Industry,

IEEE Software, July 2006.529

529DOI: 10.1109/MS.2006.104

http://doi.ieeecomputersociety.org/10.1109/MS.2006.104

2006 687

“Most companies and testing books use the term unit testing,

but its semantics varies widely in different organizations. …

Unit testing means testing the smallest separate module in

the system. Some people … stress that it’s the smallest

specified module, but opinions differ about the need for

specifications. Regardless, unit testing is technically oriented,

with in/out parameters.”

Per Runeson, A Survey of Unit Testing Practices, IEEE

Software, July 2006.530

530DOI: 10.1109/MS.2006.91

http://doi.ieeecomputersociety.org/10.1109/MS.2006.91

2006 688

“There’s no language suitable for all tasks, and there probably

won’t ever be one. When choosing a programming language,

you have to balance programmer productivity,

maintainability, efficiency, portability, tool support, and

software and hardware interfaces. … for some tasks, adopting

an existing domain-specific language, building a new one, or

using a general-purpose declarative language can be the

right choice.”

Diomidis Spinellis, Choosing a Programming Language, IEEE

Software, July 2006.531

531DOI: 10.1109/MS.2006.97

http://doi.ieeecomputersociety.org/10.1109/MS.2006.97

2006 689

“Evidence-based reasoning is becoming common in many

fields. It’s widely enshrined in the practice and teaching of

medicine, law, and management, for example. Evidence-based

approaches demand that, among other things, practitioners

systematically track down the best evidence relating to some

practice; critically appraise that evidence for validity, impact,

and applicability; and carefully document it.”

Tim Menzies, Jairus Hihn, Evidence-Based Cost Estimation for

Better-Quality Software, IEEE Software, July 2006.532

532DOI: 10.1109/MS.2006.99

http://doi.ieeecomputersociety.org/10.1109/MS.2006.99

2006 690

“Oddly enough, many software engineering issues and

conflicts that were relevant 20 years ago are still relevant

today.”

Robert L. Glass, How Much of the Software Engineering Old

Still Remains New?, IEEE Software, July 2006.533

533DOI: 10.1109/MS.2006.106

http://doi.ieeecomputersociety.org/10.1109/MS.2006.106

2006 691

2006 692

“Despite the challenges and complexities involved in

organizing and managing globally distributed software

development, this phenomenon’s pace has been remarkable.

Global software development seems to have become a

business necessity for various reasons, including cost,

scarcity of resources, and the need to locate development

closer to the customers. In fact, it is fast becoming a

pervasive business phenomenon.”

Deependra Moitra, Daniela Damian, Guest Editors’

Introduction: Global Software Development: How Far Have

We Come?, IEEE Software, September 2006.534

534DOI: 10.1109/MS.2006.126

http://doi.ieeecomputersociety.org/10.1109/MS.2006.126

2006 693

“Three closing comments are in order. … practices that

promote local knowledge movement (such as informal

discussions with peers) make global knowledge management

difficult. … a common error we’ve encountered is having

different, unconnected KMSs in place. … trying to unify

different cultures in global organizations (except under

crisis-management circumstances) might not be the right

approach.”

Peter Baloh, Kevin C. Desouza, Yukika Awazu, Managing

Knowledge in Global Software Development Efforts: Issues

and Practices, IEEE Software, September 2006.535

535DOI: 10.1109/MS.2006.135

http://doi.ieeecomputersociety.org/10.1109/MS.2006.135

2006 694

“The availability of testing infrastructure is a major factor in

product development project costs. Software virtualization is

a powerful mechanism for simulating a test setup on a few

desktops that would otherwise require ‘real’ equipment.”

Swaminathan Seetharaman, Krishna Murthy B.V.S., Test

Optimization Using Software Virtualization, IEEE Software,

September 2006.536

536DOI: 10.1109/MS.2006.143

http://doi.ieeecomputersociety.org/10.1109/MS.2006.143

2006 695

“Participation in open source projects can make us better

programmers by exposing us to maintenance, new

technologies, and different application domains, and make us

better system administrators by forcing us to tinker with

complex system setups. “

Diomidis Spinellis, Open Source and Professional

Advancement, IEEE Software, September 2006.537

537DOI: 10.1109/MS.2006.136

http://doi.ieeecomputersociety.org/10.1109/MS.2006.136

2006 696

“The following is a familiar scenario: management, feeling

pressure from corporate headquarters and the marketplace,

dictates that a product will be released ahead of the

agreed-upon schedule. This is an all-too-common example of

a company’s political climate in which influential people base

their desire for success more on personal agendas than on

quality. This scenario illustrates two key issues: the

frustrations involved in producing quality products and the

conflicts between self and team. “

Fran Boehme Mackin, Scott Stribrny, When Politics

Overshadow Software Quality, IEEE Software, September

2006.538

538DOI: 10.1109/MS.2006.145

http://doi.ieeecomputersociety.org/10.1109/MS.2006.145

2006 697

2006 698

“On behalf of the Computer History Museum and the ACM,

Grady Booch recently interviewed John Backus, who led the

IBM team that created Fortran in the 1950s. Backus went on

to coinvent the Backus-Naur Form (which was first applied to

the definition of ALGOL), then later pioneered important

advances in functional programming.”

Grady Booch, Goodness of Fit, IEEE Software, November

2006.539

539DOI: 10.1109/MS.2006.162

http://doi.ieeecomputersociety.org/10.1109/MS.2006.162

2006 699

“The first software engineering programs were at the

graduate level, primarily as terminal master’s degrees for

those already developing commercial and industrial software.

By the early 1990s, educators began to consider software

engineering’s role at the undergraduate level.”

Donald Bagert, Michael J. Lutz, Guest Editors’ Introduction:

Software Engineering Curriculum Development, IEEE

Software, November 2006.540

540DOI: 10.1109/MS.2006.164

http://doi.ieeecomputersociety.org/10.1109/MS.2006.164

2006 700

“The recommendations in Software Engineering 2004:

Curriculum Guidelines for Undergraduate Degree Programs in

Software Engineering, form a volume of the larger Computing

Curriculum project of the IEEE-CS and ACM. SE2004 evolved

from an analysis of desired student outcomes for a software

engineering graduate as compared to those for computer

science and computer engineering graduates.”

Timothy C. Lethbridge, Thomas B. Hilburn, Jorge L.

D?az-Herrera, Ann E. Kelley Sobel, Richard J. LeBlanc Jr,

SE2004: Recommendations for Undergraduate Software

Engineering Curricula, IEEE Software, November 2006.541

541DOI: 10.1109/MS.2006.171

http://doi.ieeecomputersociety.org/10.1109/MS.2006.171

2006 701

“There are many challenges in delivering a software

engineering curriculum by distance learning. … Theses

programs are characterized as part-time, open, large-scale

distance learning, professionally accredited, and primarily

aimed at practitioners in the IT industry.”

Pete Thomas, Michel Wermelinger, Juan Fern?ndez-Ramil,

Brendan Quinn, Leonor Barroca, Lucia Rapanotti, Bashar

Nuseibeh, Learning Software Engineering at a Distance, IEEE

Software, November 2006.542

542DOI: 10.1109/MS.2006.169

http://doi.ieeecomputersociety.org/10.1109/MS.2006.169

2006 702

“Open source software offers a unique opportunity for

improving learning outcomes for software engineering and

computer science education.”

Kal Toth, Experiences with Open Source Software

Engineering Tools, IEEE Software, November 2006.543

543DOI: 10.1109/MS.2006.158

http://doi.ieeecomputersociety.org/10.1109/MS.2006.158

2006 703

“In May 2000, the World Wide Web Consortium issued the

specification for version 1.1 of the Simple Object Access

Protocol. The name SOAP stuck; in version 1.2, the W3C

ceased to consider SOAP to be an acronym. SOAP is just

SOAP, a way applications can use XML to exchange structured

and typed information. SOAP-based services are the

foundation of the current push toward service-oriented Web

architecture. Unfortunately, getting from the foundation to the

complete edifice still involves a lot of work.”

Panagiotis Louridas, SOAP and Web Services, IEEE Software,

November 2006.544

544DOI: 10.1109/MS.2006.172

http://doi.ieeecomputersociety.org/10.1109/MS.2006.172

2006 704

“Quantification helps you better understand your

requirements, improving them and sometimes even revealing

new requirements or stakeholders.”

Neil Maiden, Improve Your Requirements: Quantify Them,

IEEE Software, November 2006.545

545DOI: 10.1109/MS.2006.165

http://doi.ieeecomputersociety.org/10.1109/MS.2006.165

2006 705

“The art of telling a compelling design story is understanding

what your audience knows and what they need to know about

your design, and then plotting your storyline accordingly.”

Rebecca J. Wirfs-Brock, Explaining Your Design, IEEE

Software, November 2006.546

546DOI: 10.1109/MS.2006.159

http://doi.ieeecomputersociety.org/10.1109/MS.2006.159

2006 706

“Software development currently seems to take a ‘Roman’

approach; that is, it focuses on the contributions of a group of

programmers at an organization. Instead, it should take a

‘Greek’ approach, focusing on the contributions of individual,

self-motivated programmers. But don’t let any unorganized

Barbarian programmers near!”

Robert L. Glass, Greece vs. Rome: Two Very Different

Software Cultures, IEEE Software, November 2006.547

547DOI: 10.1109/MS.2006.163

http://doi.ieeecomputersociety.org/10.1109/MS.2006.163

2007

2007 708

2007 709

“Software systems usually have the same basic architectural

pattern as their earlier incarnations, manifesting in

decreasingly refined forms as we move back in time. Similarly,

when a new problem confronts us, we try many different

approaches, but over time, for the same kind of problem,

solutions tend to converge to the same, more constrained,

solution space.”

Grady Booch, It Is What It Is Because It Was What It Was,

IEEE Software, January 2007.548

548DOI: 10.1109/MS.2007.19

http://doi.ieeecomputersociety.org/10.1109/MS.2007.19

2007 710

“Experienced programmers plan, while junior programmers

jump into their work. Some simpler personal planning

techniques can help you eliminate waste when you work,

write less code, design more simply, inject fewer defects, and

generally deliver sooner. … The best way I know to deliver

sooner is to do less.”

J.B. Rainsberger, Personal Planning, IEEE Software, January

2007.549

549DOI: 10.1109/MS.2007.23

http://doi.ieeecomputersociety.org/10.1109/MS.2007.23

2007 711

“Small software organizations–independently financed and

organized companies with fewer than 50 employees–are

fundamental to many national economies’ growth. In the US,

Brazil, Canada, China, India, Finland, Ireland, Hungary, and

many other countries, small companies represent up to 85

percent of all software organizations. However, to persist and

grow, small software companies need efficient, effective

software engineering solutions.”

Christiane Gresse von Wangenheim, Ita Richardson, Guest

Editors’ Introduction: Why are Small Software Organizations

Different?, IEEE Software, January 2007.550

550DOI: 10.1109/MS.2007.12

http://doi.ieeecomputersociety.org/10.1109/MS.2007.12

2007 712

“Software process assessments are typically the first step to

commencing software process improvement. Small software

companies find that many assessment methods are linked to

plan-driven improvement models and can be expensive in

terms of the resources required. “

Fergal Mc Caffery, Philip S. Taylor, Gerry Coleman, Adept: A

Unified Assessment Method for Small Software Companies,

IEEE Software, January 2007.551

551DOI: 10.1109/MS.2007.3

http://doi.ieeecomputersociety.org/10.1109/MS.2007.3

2007 713

“There is (or should be) more fun in software engineering

than you might think.”

Robert L. Glass, Is Software Engineering Fun?, IEEE Software,

January 2007.552

552DOI: 10.1109/MS.2007.18

http://doi.ieeecomputersociety.org/10.1109/MS.2007.18

2007 714

2007 715

“Designing incrementally, keeping it clean as you go, can

help you avoid accidental complexity. But doing this takes

discipline and design familiarity.”

Rebecca J. Wirfs-Brock, Toward Design Simplicity, IEEE

Software, March 2007.553

553DOI: 10.1109/MS.2007.57

http://doi.ieeecomputersociety.org/10.1109/MS.2007.57

2007 716

“During an architectural assessmen… it’s important to be

truthful as well as gentle. … The development organization’s

unique task is to address all the essential concerns of all the

important stakeholders and avoid being blindsided by

unexpected problems and stakeholders.”

Grady Booch, Speaking Truth to Power, IEEE Software, March

2007.554

554DOI: 10.1109/MS.2007.53

http://doi.ieeecomputersociety.org/10.1109/MS.2007.53

2007 717

“Accepting some of the testing team’s responsibility by writing

your own tests lets you trade the time you spend fixing

defects for less time spent avoiding them in the first place.”

J.B. Rainsberger, Avoiding Defects, IEEE Software, March

2007.555

555DOI: 10.1109/MS.2007.34

http://doi.ieeecomputersociety.org/10.1109/MS.2007.34

2007 718

“The growing attention being paid to stakeholders’ needs

and desires reflects the growing importance of requirements

engineering (RE) in software and systems development. … :

identifying the stakeholders in a project, determining who and

how important they are, prioritizing the identified stakeholder

roles, and selecting representative individuals or groups

from the identified and prioritized stakeholder roles with

whom the development team can elicit and validate system

requirements.”

Roel J. Wieringa, Martin Glinz, Guest Editors’ Introduction:

Stakeholders in Requirements Engineering, IEEE Software,

March 2007.556

556DOI: 10.1109/MS.2007.42

http://doi.ieeecomputersociety.org/10.1109/MS.2007.42

2007 719

“Requirements engineering must manage the risks arising

from project stakeholders. The Outcome-Based Stakeholder

Risk Assessment Model (Obsram) provides guidance in

stakeholder identification, identification of stakeholder

impacts and perceptions, identification of potentially

negative responses that pose risks to the project, and

assessment and prioritization of those risks.”

Richard W. Woolridge, Joanne E. Hale, Denise J. McManus,

Stakeholder Risk Assessment: An Outcome-Based Approach,

IEEE Software, March 2007.557

557DOI: 10.1109/MS.2007.54

http://doi.ieeecomputersociety.org/10.1109/MS.2007.54

2007 720

“Terminological interference occurs in requirements

engineering when stakeholders have different interpretations

of the terms they use to describe their problem domain.”

Nan Niu, Steve Easterbrook, So, You Think You Know Others’

Goals? A Repertory Grid Study, IEEE Software, March 2007.558

558DOI: 10.1109/MS.2007.52

http://doi.ieeecomputersociety.org/10.1109/MS.2007.52

2007 721

“The recommendations for analyzing productivity in the

appendix to the ISO/IEC 15939 standard are inappropriate. …

Problems with the ISO/IEC advice can be compounded if

software engineers attempt to apply statistical

process-control techniques to software productivity metrics.”

Colin Connaughton, David Ross Jeffery, Barbara Kitchenham,

Misleading Metrics and Unsound Analyses, IEEE Software,

March 2007.559

559DOI: 10.1109/MS.2007.49

http://doi.ieeecomputersociety.org/10.1109/MS.2007.49

2007 722

“Eclipse is an open source software project dedicated to

providing a robust, full-featured, and commercial-quality

platform for developing and supporting highly integrated

software engineering tools.”

Michael Jiang, Zhihui Yang, Using Eclipse as a

Tool-Integration Platform for Software Development, IEEE

Software, March 2007.560

560DOI: 10.1109/MS.2007.58

http://doi.ieeecomputersociety.org/10.1109/MS.2007.58

2007 723

2007 724

“The architecture of a software-intensive system is largely

irrelevant to its end users. Far more important to these

stakeholders is the system’s behavior, exhibited by raw,

working source code. As long as a system provides the right

answers at the right time with all the right other ‘-ilities’

(maintainability, dependability, changeability, and so on), end

users couldn’t care less about what’s behind the curtain

making things work. To stakeholders other than end users,

however, a system’s architecture is intensely interesting.

Moreover, software architecture has had a hand in better

project management, greater use of iterative development,

and leverage from the Web’s infrastructure.”

Grady Booch, The Irrelevance of Architecture, IEEE Software,

May 2007.561

561DOI: 10.1109/MS.2007.93

http://doi.ieeecomputersociety.org/10.1109/MS.2007.93

2007 725

“Knowing what tactic to take when someone criticizes your

design is important. Designers need to recognize, accept, and

seek out valid criticism, while deflecting false criticisms and

defusing aesthetic arguments.”

Rebecca J. Wirfs-Brock, Handling Design Criticism, IEEE

Software, May 2007.562

562DOI: 10.1109/MS.2007.76

http://doi.ieeecomputersociety.org/10.1109/MS.2007.76

2007 726

“Test-driven development is a discipline of design and

programming where every line of new code is written in

response to a test the programmer writes just before coding.

… The ways TDD is being used in nontrivial situations

(database development, embedded software development,

GUI development, performance tuning), signifying an

adoption level for the practice beyond the visionary phase and

into the early mainstream.”

Grigori Melnik, Ron Jeffries, Guest Editors’ Introduction:

TDD–The Art of Fearless Programming, IEEE Software, May

2007.563

563DOI: 10.1109/MS.2007.75

http://doi.ieeecomputersociety.org/10.1109/MS.2007.75

2007 727

“A professional software developer ships clean, flexible code

that works-on time. … Test-driven development is a

discipline that helps developers behave in a more professional

manner.”

Robert C. Martin, Professionalism and Test-Driven

Development, IEEE Software, May 2007.564

564DOI: 10.1109/MS.2007.85

http://doi.ieeecomputersociety.org/10.1109/MS.2007.85

2007 728

“Developers can use a test-driven development with

database schema just as they use it with application code.

Implementing test-driven database development (TDDD)

involves three relatively simple steps: database refactoring,

database regression testing, and continuous database

integration.”

Scott W. Ambler, Test-Driven Development of Relational

Databases, IEEE Software, May 2007.565

565DOI: 10.1109/MS.2007.91

http://doi.ieeecomputersociety.org/10.1109/MS.2007.91

2007 729

“An explanation of test-driven development often begins by

describing the red-green-refactor cycle. This slogan is so

catchy and the description so simple that practitioners and

tool developers tend to focus only on this localized cycle.

Experience has shown that a successful functional test-driven

development strategy must span the entire application life

cycle and must be supported by effective tools. “

Jennitta Andrea, Envisioning the Next Generation of

Functional Testing Tools, IEEE Software, May 2007.566

566DOI: 10.1109/MS.2007.73

http://doi.ieeecomputersociety.org/10.1109/MS.2007.73

2007 730

2007 731

“Cognitive biases exist, and designers are remiss if we ignore

them. By becoming aware of some common cognitive biases

in design discussions, you can learn when it’s worthwhile to

tweak your message to increase the likelihood of it being

accepted.”

Rebecca J. Wirfs-Brock, Giving Design Advice, IEEE Software,

July 2007.567

567DOI: 10.1109/MS.2007.108

http://doi.ieeecomputersociety.org/10.1109/MS.2007.108

2007 732

“A domain-specific language for building user interfaces

offers a transparent way for programmers to specify interface

elements. Microsoft’s Extensible Application Markup

Language is an XML dialect for this purpose. However, XAML

isn’t the only choice for programmers who wish to try a

declarative approach, and some options are even open

source.”

Panagiotis Louridas, Declarative GUI Programming in

Microsoft Windows, IEEE Software, July 2007.568

568DOI: 10.1109/MS.2007.105

http://doi.ieeecomputersociety.org/10.1109/MS.2007.105

2007 733

“Virtually all well-structured music, music that pleases the

ear and moves the spirit, is full of patterns. By comparing

musical and software patterns, the author helps clarify the

purposes and forms of patterns. Architectural and design

patterns make software-intensive systems easier to

understand and adapt to because of their regularity and

simplicity.”

Grady Booch, The Well-Tempered Architecture, IEEE

Software, July 2007.569

569DOI: 10.1109/MS.2007.122

http://doi.ieeecomputersociety.org/10.1109/MS.2007.122

2007 734

“Patterns have become part of the software development

mainstream. They’re available for all phases of the

development process, including analysis, documentation,

design, testing, and configuration management, to name a

few.”

Michael Kircher, Markus Völter, Guest Editors’ Introduction:

Software Patterns, IEEE Software, July 2007.570

570DOI: 10.1109/MS.2007.109

http://doi.ieeecomputersociety.org/10.1109/MS.2007.109

2007 735

“For the past two decades, software patterns have

significantly influenced how developers design and implement

computing systems, well above and beyond the most popular

research in the software field. “

Douglas C. Schmidt, Kevlin Henney, Frank Buschmann, Past,

Present, and Future Trends in Software Patterns, IEEE

Software, July 2007.571

571DOI: 10.1109/MS.2007.115

http://doi.ieeecomputersociety.org/10.1109/MS.2007.115

2007 736

“All of software design involves developers making decisions

and reifying those decisions in code. … However, architects

often fail to document their decisions well. This leads to

architectural erosion: decisions made during later

development might conflict with the original architectural

decisions and thus cause significant system disruptions. “

Neil B. Harrison, Uwe Zdun, Paris Avgeriou, Using Patterns to

Capture Architectural Decisions, IEEE Software, July 2007.572

572DOI: 10.1109/MS.2007.124

http://doi.ieeecomputersociety.org/10.1109/MS.2007.124

2007 737

“Microsoft’s patterns & practices group conducted a survey

that indicates a significant gap between the patterns expert

community and the software practitioners attempting to use

and leverage patterns in their daily work.”

Jason Hogg, Dragos Manolescu, Wojtek Kozaczynski, Ade

Miller, The Growing Divide in the Patterns World, IEEE

Software, July 2007.573

573DOI: 10.1109/MS.2007.120

http://doi.ieeecomputersociety.org/10.1109/MS.2007.120

2007 738

“Researchers have studied and created a wide range of

techniques to support software engineers during

development. … there’s a high demand and acceptance for

unobtrusive, quickly executable, and reactive assistance in

core software engineering phases to help solve the problems

at hand.”

Eric Ras, Jörg Rech, Björn Decker, Intelligent Assistance in

German Software Development: A Survey, IEEE Software, July

2007.574

574DOI: 10.1109/MS.2007.110

http://doi.ieeecomputersociety.org/10.1109/MS.2007.110

2007 739

“Asimov’s Laws of Robotics constrain robots to serve their

human masters. Minor rewording shows that similar principles

are very relevant to software too. These laws of software

encompass a host of desiderata and trade-offs that software

developers need to keep in mind. They also demonstrate that

issues that are typically treated in a fragmented manner are

actually strongly intertwined.”

Dror G. Feitelson, Asimov’s Laws of Robotics Applied to

Software, IEEE Software, July 2007.575

575DOI: 10.1109/MS.2007.100

http://doi.ieeecomputersociety.org/10.1109/MS.2007.100

2007 740

2007 741

“Building and acquiring software requires making many

decisions and choosing between numerous solutions, yet the

infrastructure to help people make decisions based on good

evidence isn’t well developed. The software engineering

community needs better communication between researchers

and practitioners to help make useful bodies of evidence

available that can impact practice.”

Forrest Shull, Who Needs Evidence, Anyway?, IEEE Software,

September 2007.576

576DOI: 10.1109/MS.2007.152

http://doi.ieeecomputersociety.org/10.1109/MS.2007.152

2007 742

“Since 2005, developers have used Ajax to let users interact

with Web applications much as they do with desktop

applications. But the Ajax features represented in applications

such as Google Maps, Netvibes, and Zimbra Collaboration

Suite demand detailed coding. Ajax frameworks are utility

sets that make it easier to develop and maintain these

applications.”

Juan Pablo Aroztegi, Nicolás Serrano, Ajax Frameworks in

Interactive Web Apps, IEEE Software, September 2007.577

577DOI: 10.1109/MS.2007.132

http://doi.ieeecomputersociety.org/10.1109/MS.2007.132

2007 743

“Building clean abstractions with clearly defined extension

points is satisfying, but the best design choice isn’t always

obvious. How much access should you give a subclass to a

class’s inner workings? How much freedom should you give a

subclass designer to ‘bend’ inherited behaviors to make a new

abstraction fit in or to extend an existing one? These

decisions involve nuanced reasoning. The contract between a

class and its subclasses requires thoughtful design,

experimentation, and careful specification.”

Rebecca J. Wirfs-Brock, Designing Extensible Classes, IEEE

Software, September 2007.578

578DOI: 10.1109/MS.2007.137

http://doi.ieeecomputersociety.org/10.1109/MS.2007.137

2007 744

“The architect, either as an individual, a role, or a team,

lovingly crafts, grows, and governs that architecture as it

emerges from the thousands of individual design decisions

of which it’s composed. In this sense, an architecture-first

approach appears to be a reflection of sound development

practices.”

Grady Booch, The Economics of Architecture-First, IEEE

Software, September 2007.579

579DOI: 10.1109/MS.2007.146

http://doi.ieeecomputersociety.org/10.1109/MS.2007.146

2007 745

“Copy-pasting code is a source of bugs. By employing in our

programs abstraction mechanisms such as functions,

classes, types, decision tables, domain-specific languages,

and databases, we can abstract common elements into

parameterized reusable functionality. However, abstraction

has its cost. Its early gains are large, but eventually the

benefits turn negative and the code becomes less

comprehensible and maintainable. Deciding when abstracting

is appropriate is what makes programming an art.”

Diomidis Spinellis, Abstraction and Variation, IEEE Software,

September 2007.580

580DOI: 10.1109/MS.2007.127

http://doi.ieeecomputersociety.org/10.1109/MS.2007.127

2007 746

“The languages discussed … have a long history, which is

perhaps why some have had several different names over the

years. One such language is Lisp, the second-oldest

programming language. For years, many somewhat

dismissively described languages such as Lisp as ‘scripting

languages.’ Today, we more commonly refer to them as

dynamically typed languages, typified by Python and Ruby,

and their impact is arguably greater than ever.”

Roel Wuyts, Laurence Tratt, Guest Editors’ Introduction:

Dynamically Typed Languages, IEEE Software, September

2007.581

581DOI: 10.1109/MS.2007.140

http://doi.ieeecomputersociety.org/10.1109/MS.2007.140

2007 747

“Five years ago, the team at Reflexis ran into a little language

from Brazil. Lua (pronounced loo-ah) changed the way they

work profoundly. It lets them create hybrid solutions that

combine the strengths of statically typed software with the

flexibility of a dynamically typed environment. In short, with

Lua, they get the best of both worlds. Lua can help you

become more productive by extending your C/C++ creations

with the expressive power and flexibility of a dynamically

typed language.”

Ashwin Hirschi, Traveling Light, the Lua Way, IEEE Software,

September 2007.582

582DOI: 10.1109/MS.2007.150

http://doi.ieeecomputersociety.org/10.1109/MS.2007.150

2007 748

“Python, a dynamically typed language, can implement these

software frameworks for major OR operational research

methodologies (mathematical programming and simulation)

in the same programming environment. By doing so, Python,

in effect, glues software environments that have been

independent, thus improving the software development cycle

for sophisticated applications requiring different model types.”

Suleyman Karabuk, F. Hank Grant, A Common Medium for

Programming Operations-Research Models, IEEE Software,

September 2007.583

583DOI: 10.1109/MS.2007.125

http://doi.ieeecomputersociety.org/10.1109/MS.2007.125

2007 749

“The emergence of the model-driven development paradigm

has revitalized interest in domain-specific languages.

Embedding a DSL in a dynamic language facilitates rapid

development.”

Jesús García Molina, Jesús Sánchez Cuadrado, Building

Domain-Specific Languages for Model-Driven Development,

IEEE Software, September 2007.584

584DOI: 10.1109/MS.2007.135

http://doi.ieeecomputersociety.org/10.1109/MS.2007.135

2007 750

“By harnessing Smalltalk’s dynamic nature and reflective

capabilities, Seaside is able to incorporate key features such

as a component architecture that supports multiple,

simultaneously active control flows; programmatical XHTML

generation; and on-the-fly debugging, code editing, and

recompilation.”

Stéphane Ducasse, Lukas Renggli, Adrian Lienhard, Seaside: A

Flexible Environment for Building Dynamic Web Applications,

IEEE Software, September 2007.585

585DOI: 10.1109/MS.2007.144

http://doi.ieeecomputersociety.org/10.1109/MS.2007.144

2007 751

“Although the Semantic Web is data oriented and the World

Wide Web is document oriented, both are fundamentally

decentralized, heterogeneous, and open. The Semantic Web

isn’t a global database, centralized in one location with one

agreed-upon schema and one meaning. Instead, anyone can

make any statement at any location, using any vocabulary or

structure.”

Eyal Oren, Armin Haller, Manfred Hauswirth, Benjamin

Heitmann, Stefan Decker, Cédric Mesnage, A Flexible

Integration Framework for Semantic Web 2.0 Applications,

IEEE Software, September 2007.586

586DOI: 10.1109/MS.2007.126

http://doi.ieeecomputersociety.org/10.1109/MS.2007.126

2007 752

2007 753

“Software development teams need to make decisions

effectively as a team, but most groups spend more time in

meetings and discussions than they need. Sometimes, to

evaluate an idea, we have to try it for a while. If you see your

team bogged down in meetings, it’s time to run an

experiment and replace opinions with facts.”

J.B. Rainsberger, Just Try It, IEEE Software, November

2007.587

587DOI: 10.1109/MS.2007.171

http://doi.ieeecomputersociety.org/10.1109/MS.2007.171

2007 754

“Yukijiro Matsumoto, chief designer of the Ruby programming

language, claims brevity is one of the most important

contributors to beautiful code. Although brevity can

contribute to code beauty, clarity of purpose, expressive use

of the programming language, and design elegance also play a

part. But is there more to good design than beautiful code?”

Rebecca J. Wirfs-Brock, Does Beautiful Code Imply Beautiful

Design?, IEEE Software, November 2007.588

588DOI: 10.1109/MS.2007.163

http://doi.ieeecomputersociety.org/10.1109/MS.2007.163

2007 755

“Paper as a tool for expressing our thoughts offers superb

usability and versatility, letting us mix various notations and

multiple levels of abstraction. This makes it easier to pour out

our thoughts on it. In contrast to software tools, paper

doesn’t provide feedback and won’t interrupt us with various

notifications. This gives us a chance to meditate on our

design in a state of flow.”

Diomidis Spinellis, On Paper, IEEE Software, November

2007.589

589DOI: 10.1109/MS.2007.173

http://doi.ieeecomputersociety.org/10.1109/MS.2007.173

2007 756

“A comparison of building architecture and software

architecture reveals the differences, congruences, and

commonalities between the two. There are differences in cost

estimation, but there are similarities in divisions of labor or

knowledge, degrees of formality, and the use of different

viewpoints, use cases, an incremental design, and a particular

style.”

Grady Booch, Artifacts and Process, IEEE Software, November

2007.590

590DOI: 10.1109/MS.2007.159

http://doi.ieeecomputersociety.org/10.1109/MS.2007.159

2007 757

“Service-centric software system is a multidisciplinary

paradigm concerned with software systems that are

constructed as compositions of autonomous services. These

systems extend the service-oriented architecture paradigm by

focusing on the design, development, and maintenance of

software built under SOAs.”

Olivier Nano, Andrea Zisman, Guest Editors’ Introduction:

Realizing Service-Centric Software Systems, IEEE Software,

November 2007.591

591DOI: 10.1109/MS.2007.166

http://doi.ieeecomputersociety.org/10.1109/MS.2007.166

2007 758

“Composing software services requires solving both

low-level technical problems and high-level semantic

issues.”

Philippe Lalanda, Cristina Marin, A Domain-Configurable

Development Environment for Service-Oriented Applications,

IEEE Software, November 2007.592

592DOI: 10.1109/MS.2007.154

http://doi.ieeecomputersociety.org/10.1109/MS.2007.154

2007 759

“Development of today’s information systems must take a

service-centric approach. The drive is toward designing

service-centric systems involving well-defined, loosely

coupled services that are reusable, discoverable, and

composable.”

Dieter Fensel, Maciej Zaremba, Michal Zaremba, Tomas Vitvar,

Matthew Moran, SESA: Emerging Technology for

Service-Centric Environments, IEEE Software, November

2007.593

593DOI: 10.1109/MS.2007.178

http://doi.ieeecomputersociety.org/10.1109/MS.2007.178

2007 760

“Open source development is often regarded as a chaotic

environment where new initiatives’ success or failure just

happens by chance. However, successful open source

communities are applying incubation processes for

managing the risks associated with creating new projects. …

e.g. Apache and Eclipse communities.”

José L. Ruiz, Manuel Santillán, Hugo A. Parada G., Félix

Cuadrado, Juan C. Dueñas, Apache and Eclipse: Comparing

Open Source Project Incubators, IEEE Software, November

2007.594

594DOI: 10.1109/MS.2007.157

http://doi.ieeecomputersociety.org/10.1109/MS.2007.157

2007 761

“Ruby on Rails is a novel Web 2.0 application development

framework that attempts to combine PHP’s simple immediacy

with Java’s architecture, purity, and quality.”

Paul Kirchberg, Michael Bächle, Ruby on Rails, IEEE Software,

November 2007.595

595DOI: 10.1109/MS.2007.176

http://doi.ieeecomputersociety.org/10.1109/MS.2007.176

2008

2008 763

2008 764

“Measuring software development productivity is difficult,

but it’s not impossible. It’s prone to misuse and

misinterpretation, and highly portable, precise measures are

elusive. But we can still implement meaningful measures,

provided we understand why we’re doing it and provided we’re

aware of their limitations.”

Hakan Erdogmus, Measurement Acquiescence, IEEE Software,

March 2008.596

596DOI: 10.1109/MS.2008.40

http://doi.ieeecomputersociety.org/10.1109/MS.2008.40

2008 765

“As the code written today becomes part of tomorrow’s

inexorably growing legacy, preserving these stories becomes

increasingly important. It’s costly to rely upon informal

storytelling to preserve and communicate important

decisions; it’s incredibly costly to try to recreate those

decisions and their rationale when the storytellers themselves

are gone. Insofar as a software development organization can

preserve its stories in a system’s written architecture, it can

make evolving that system materially easier.”

Grady Booch, Tribal Memory, IEEE Software, March 2008.597

597DOI: 10.1109/MS.2008.52

http://doi.ieeecomputersociety.org/10.1109/MS.2008.52

2008 766

“When dealing with quality requirements, you often end up in

difficult trade-off analysis. You must take into account

aspects such as release targets, end-user experience, and

business opportunities. At the same time, you must consider

what is feasible with the evolving system architecture and the

available development resources. Our experience from the

mobile-phone domain shows that much can be gained if

development team members share a common framework of

quality indicators and have a simple, easy-to-use model for

reasoning about quality targets.”

Richard Berntsson Svensson, Björn Regnell, Thomas Olsson,

Supporting Roadmapping of Quality Requirements, IEEE

Software, March 2008.598

598DOI: 10.1109/MS.2008.48

http://doi.ieeecomputersociety.org/10.1109/MS.2008.48

2008 767

“Test-driven development (TDD) is first and foremost a

design practice. The question is, ‘How good are the resulting

designs?’ … TDD programmers tend to write software

modules that are smaller, less complex, and more highly

tested than modules produced by their test-last counterparts.

However, the results didn’t support claims for lower coupling

and increased cohesion with TDD.”

David Janzen, Hossein Saiedian, Does Test-Driven

Development Really Improve Software Design Quality?, IEEE

Software, March 2008.599

599DOI: 10.1109/MS.2008.34

http://doi.ieeecomputersociety.org/10.1109/MS.2008.34

2008 768

“The Business Process Execution Language specifies Web

services that work together to perform a business process.

BPEL is an orchestrating language: it sets down exactly how

the Web services will cooperate to carry out the overall

business process. BPEL is an XML-based programming

language - that is, you write BPEL programs in XML. Because

XML wasn’t designed with programmers in mind, the

programming results aren’t prime examples of elegance.

Fortunately, you rarely need to write in BPEL by hand. Most

BPEL programs are written using special graphical editors

that let you describe the business process diagrammatically

and then automatically generate the corresponding BPEL

code.”

Panagiotis Louridas, Orchestrating Web Services with BPEL,

IEEE Software, March 2008.600

600DOI: 10.1109/MS.2008.42

http://doi.ieeecomputersociety.org/10.1109/MS.2008.42

2008 769

“Google’s position as a leading Web-based applications

platform and its embrace of rigorous incremental testing

might be the vanguard of a new definition of what software

testing encompasses.”

Greg Goth, ‘Googling’ Test Practices? Web Giant’s Culture

Encourages Process Improvement, IEEE Software, March

2008.601

601DOI: 10.1109/MS.2008.28

http://doi.ieeecomputersociety.org/10.1109/MS.2008.28

2008 770

2008 771

“Model-based testing (MBT) approaches help automatically

generate test cases using models extracted from software

artifacts, … certain specialized domains are applying MBT,

but it does not yet seem to be a mainstream approach.”

Arilo Dias Neto, Rajesh Subramanyan, Forrest Shull, Guilherme

Horta Travassos, Marlon Vieira, Improving Evidence about

Software Technologies: A Look at Model-Based Testing, IEEE

Software, May 2008.602

602DOI: 10.1109/MS.2008.64

http://doi.ieeecomputersociety.org/10.1109/MS.2008.64

2008 772

“Designers need to sharpen their focus and apply design

energy where it will have the most impact. So, identifying

what’s core to our system’s success is one of the most critical

things we must do.”

Rebecca J. Wirfs-Brock, Design Strategy, IEEE Software, May

2008.603

603DOI: 10.1109/MS.2008.58

http://doi.ieeecomputersociety.org/10.1109/MS.2008.58

2008 773

“How to apply user-centered design methods to design

interactive systems for the elderly. A case study (with its

successes and weaknesses) showed that a need exists for

more creative and participatory design approaches for this

population.”

Ulrike Pfeil, Helena Sustar, Panayiotis Zaphiris, Requirements

Elicitation with and for Older Adults, IEEE Software, May

2008.604

604DOI: 10.1109/MS.2008.69

http://doi.ieeecomputersociety.org/10.1109/MS.2008.69

2008 774

“What is the optimal design for a given system, a design that

reasonably balances all the forces that weigh in on the

problem? In turn, what is the optimal organizational

structure for developing, deploying, and evolving that

system? The challenge for every organization is to find the

sweet spot that provides the right balance of innovation,

predictability, repeatability, and risk confrontation for that

project at every given moment.”

Grady Booch, Architectural Organizational Patterns, IEEE

Software, May 2008.605

605DOI: 10.1109/MS.2008.56

http://doi.ieeecomputersociety.org/10.1109/MS.2008.56

2008 775

“Salesforce.com has used the RITE (Rapid Iterative Testing

and Evaluation) method to quickly and iteratively improve its

software design. RITE has helped the company retain high

quality while increasing its rate of delivery using an agile

development approach.”

Jeff Patton, Getting Software RITE, IEEE Software, May

2008.606

606DOI: 10.1109/MS.2008.62

http://doi.ieeecomputersociety.org/10.1109/MS.2008.62

2008 776

“Software building’s golden rule is that you should automate

all build tasks. The most popular tool options for doing this

are the facilities that your integrated development

environment (IDE) provides, the various implementations of

Make, and Apache Ant and Maven.”

Diomidis Spinellis, Software Builders, IEEE Software, May

2008.607

607DOI: 10.1109/MS.2008.74

http://doi.ieeecomputersociety.org/10.1109/MS.2008.74

2008 777

“A successful project effectively manages four cornerstones -

schedule, cost, scope, and quality - to achieve its goals.

Every project activity influences these four cornerstones.

Stochastic optimization modeling factors in the uncertainties

associated with project activities and provides insight into the

expected project outputs as probability distributions rather

than as deterministic approximations.”

Uma Sudhakar Rao, Chinmay Pradhan, Srikanth Kestur,

Stochastic Optimization Modeling and Quantitative Project

Management, IEEE Software, May 2008.608

608DOI: 10.1109/MS.2008.77

http://doi.ieeecomputersociety.org/10.1109/MS.2008.77

2008 778

“Open source refers to software that you may freely use,

modify, or distribute provided you observe certain restrictions

with respect to copyright and protection of its open source

status. A major difference between free and open source

software (FOSS) and freeware or public-domain software is

that FOSS generally has a copyright. FOSS isn’t free software

and often requires substantial investment before you can

deploy it in the marketplace. “

Christof Ebert, Open Source Software in Industry, IEEE

Software, May 2008.609

609DOI: 10.1109/MS.2008.67

http://doi.ieeecomputersociety.org/10.1109/MS.2008.67

2008 779

“Software development effort estimates are reported to be

highly inaccurate and systematically overly optimistic.

Empirical evidence suggests that this problem is caused to

some extent by the influence of irrelevant and misleading

information - for example, information about the client’s

budget. The only effective way to eliminate this influence is to

avoid exposure to such information.”

Stein Grimstad, Magne J?rgensen, Avoiding Irrelevant and

Misleading Information When Estimating Development Effort,

IEEE Software, May 2008.610

610DOI: 10.1109/MS.2008.57

http://doi.ieeecomputersociety.org/10.1109/MS.2008.57

2008 780

“People might love to support underdogs, but they also love

to kick them when they’re down. And, at this point in time at

least, software is the world’s technological underdog!”

Robert L. Glass, Software: Hero or Zero?, IEEE Software, May

2008.611

611DOI: 10.1109/MS.2008.75

http://doi.ieeecomputersociety.org/10.1109/MS.2008.75

2008 781

2008 782

“Process trends can be placed inside a triangular map

according to their emphasis on three aspects, represented by

the vertices: people, technology, and rigor. Plan-oriented,

engineering, and research-based approaches tend to view

software as a rigid artifact, so they stress technology and

rigor over people. Evolutionary approaches tend to view

software development as an organic, skills-driven technical

activity, so they stress people and technology over rigor. …

A more complete scheme requires dissection in terms of seven

essential, mutually reinforcing characteristics:

human-centricity, technical orientation, discipline,

pragmatism, empiricism, experimentation, and value

orientation.”

Hakan Erdogmus, Essentials of Software Process, IEEE

Software, July 2008.612

612DOI: 10.1109/MS.2008.87

http://doi.ieeecomputersociety.org/10.1109/MS.2008.87

2008 783

“There can be significant benefits in thinking through a design

until you get it ‘right enough’ before launching into a major

development effort. For such up-front design to be effective,

you must develop a design rhythm that balances thinking,

learning, and doing.”

Rebecca J. Wirfs-Brock, Up-front Design, IEEE Software, July

2008.613

613DOI: 10.1109/MS.2008.104

http://doi.ieeecomputersociety.org/10.1109/MS.2008.104

2008 784

“Without refactoring, complex software-intensive systems

become increasingly irregular and thus increasingly chaotic

over time. We can understand complex software systems only

when they’re nearly decomposable and hierarchic. One

measure … is lines of source code: the greater the SLOC, the

more inertia to change the system will have, the more people

it will take to keep it fed, the more stakeholders who will be

crawling all over it. … the more complex measures … are

tuned to Philippe Kruchten’s 4+1 view model of architecture.”

Grady Booch, Measuring Architectural Complexity, IEEE

Software, July 2008.614

614DOI: 10.1109/MS.2008.91

http://doi.ieeecomputersociety.org/10.1109/MS.2008.91

2008 785

“Not all scientific computing is high-performance computing

- the variety of scientific software is huge. Such software

might be complex simulation software developed and running

on a high-performance computer, or software developed on a

PC for embedding into instruments; for manipulating,

analyzing or visualizing data or for orchestrating workflows.”

Judith Segal, Chris Morris, Developing Scientific Software,

IEEE Software, July 2008.615

615DOI: 10.1109/MS.2008.85

http://doi.ieeecomputersociety.org/10.1109/MS.2008.85

2008 786

“The development of scientific software involves risk in the

underlying theory, its implementation, and its use. … If the

software’s purpose shifts away from just showing the

theory’s viability, risk shifts to the implementation. At this

point, testing must assess the implementation, not the

theory. Most scientists miss this shift.”

Rebecca Sanders, Diane Kelly, Dealing with Risk in Scientific

Software Development, IEEE Software, July 2008.616

616DOI: 10.1109/MS.2008.84

http://doi.ieeecomputersociety.org/10.1109/MS.2008.84

2008 787

“Studies of computational scientists developing software for

high-performance computing systems indicate that these

scientists face unique software engineering issues. Previous

failed attempts to transfer SE technologies to this domain

haven’t always taken these issues into account. To support

scientific-software development, the SE community can

disseminate appropriate practices and processes, develop

educational materials specifically for computational scientists,

and investigate the large-scale reuse of development

frameworks.”

Jeffrey C. Carver, Lorin M. Hochstein, Daniela Cruzes, Victor R.

Basili, Jeffrey K. Hollingsworth, Marvin V. Zelkowitz, Forrest

Shull, Understanding the High-Performance-Computing

Community: A Software Engineer’s Perspective, IEEE

Software, July 2008.617

617DOI: 10.1109/MS.2008.103

http://doi.ieeecomputersociety.org/10.1109/MS.2008.103

2008 788

“Scientific workflows - models of computation that capture

the orchestration of scientific codes to conduct in silico

research - are gaining recognition as an attractive alternative

to script-based orchestration. Even so, researchers

developing scientific workflow technologies still face

fundamental challenges, including developing the underlying

science of scientific workflows. You can classify

scientific-workflow environments according to three major

phases of in silico research: discovery, production, and

distribution.”

David Woollard, Nenad Medvidovic, Yolanda Gil, Chris A.

Mattmann, Scientific Software as Workflows: From Discovery

to Distribution, IEEE Software, July 2008.618

618DOI: 10.1109/MS.2008.92

http://doi.ieeecomputersociety.org/10.1109/MS.2008.92

2008 789

“Reactive systems that service multiple clients or users are

often highly configurable to provide customized, value-added

services to individual users. A large configuration space is

characteristic of such systems, resulting in a large test state

space.”

Tony Savor, Testing Feature-Rich Reactive Systems, IEEE

Software, July 2008.619

619DOI: 10.1109/MS.2008.99

http://doi.ieeecomputersociety.org/10.1109/MS.2008.99

2008 790

“Checklists are an important part of code and design

inspections. Ideally, they aim to increase the number of faults

found per inspection hour by highlighting known areas of

previous failure. … The author subjects checklists’

effectiveness to formal statistical testing, using data from

308 inspections by industrial engineers over a three-year

period. The results showed no evidence that checklists

significantly improved these inspections.”

Les Hatton, Testing the Value of Checklists in Code

Inspections, IEEE Software, July 2008.620

620DOI: 10.1109/MS.2008.100

http://doi.ieeecomputersociety.org/10.1109/MS.2008.100

2008 791

“Software engineers will do better work and stay with a

company if they are motivated - as a result the success of

software projects is likely to improve. … in-depth review of the

92 studies published in the last 25 years on software engineer

motivation … give an overview of what managers need to

know to improve motivation among their employees.”

Nathan Baddoo, Tracy Hall, Sarah Beecham, Helen Sharp,

Hugh Robinson, What Do We Know about Developer

Motivation?, IEEE Software, July 2008.621

621DOI: 10.1109/MS.2008.105

http://doi.ieeecomputersociety.org/10.1109/MS.2008.105

2008 792

“The software development process and the resulting product

are so complex that no error-detecting approach will ever be

able to produce error-free software.”

Robert L. Glass, Two Mistakes and Error-Free Software: A

Confession, IEEE Software, July 2008.622

622DOI: 10.1109/MS.2008.102

http://doi.ieeecomputersociety.org/10.1109/MS.2008.102

2008 793

2008 794

“A not-so-subtle divide separates empirical and

constructionist software research. Constructionists maintain

that software research should be about creating technologies,

devising new methods. Empiricists are interested in studying

and understanding existing approaches. The antagonism

between the two camps does not serve our industry well - it

needs both modes of research.”

Hakan Erdogmus, Must Software Research Stand Divided?,

IEEE Software, September 2008.623

623DOI: 10.1109/MS.2008.120

http://doi.ieeecomputersociety.org/10.1109/MS.2008.120

2008 795

“Trust is a subjective, user-centric, context-dependent

concept, and is thus difficult to define universally. On the

Internet, several factors make trust more difficult to build,

explaining why some successful brick-and-mortar retail

chains have been unable to translate their reputation to the

virtual platform the Web offers.”

Patricia Beatty, Ejike Ofuonye, Scott Dick, James Miller, Ian

Reay, How Do We Build Trust into E-commerce Web Sites?,

IEEE Software, September 2008.624

624DOI: 10.1109/MS.2008.136

http://doi.ieeecomputersociety.org/10.1109/MS.2008.136

2008 796

“Some software engineering ideas have a half-life. … this

half-life is roughly five years, … the need for software

engineers to thus stay abreast of new technologies.”

Philippe Kruchten, The Biological Half-Life of Software

Engineering Ideas, IEEE Software, September 2008.625

625DOI: 10.1109/MS.2008.127

http://doi.ieeecomputersociety.org/10.1109/MS.2008.127

2008 797

“A software agent is defined as an encapsulated software

entity with one or more specified goals. To fulfill these goals,

an agent shows autonomous behavior and interacts

continuously with its environment and other agents.”

Hisham Mubarak, Developing Flexible Software Using

Agent-Oriented Software Engineering, IEEE Software,

September 2008.626

626DOI: 10.1109/MS.2008.135

http://doi.ieeecomputersociety.org/10.1109/MS.2008.135

2008 798

“Static analysis examines code in the absence of input data

and without running the code. It can detect potential

security violations (SQL injection), runtime errors

(dereferencing a null pointer) and logical inconsistencies (a

conditional test that can’t possibly be true). … FindBugs, an

open source static-analysis tool for Java … evaluates what

kinds of defects can be effectively detected with relatively

simple techniques and helps developers understand how to

incorporate such tools into software development.”

Nathaniel Ayewah, John Penix, J. David Morgenthaler, William

Pugh, David Hovemeyer, Using Static Analysis to Find Bugs,

IEEE Software, September 2008.627

627DOI: 10.1109/MS.2008.130

http://doi.ieeecomputersociety.org/10.1109/MS.2008.130

2008 799

“Refactoring tools can improve the speed and accuracy with

which developers create and maintain software - but only if

they are used. In practice, tools are not used as much as they

could be; this seems to be because sometimes they do not

align with the refactoring tactic preferred by most

programmers, a tactic the authors call ‘floss refactoring.’ They

propose five principles that characterize successful

floss-refactoring tools—principles that can help programmers

to choose the most appropriate refactoring tools and also help

toolsmiths to design tools that fit the programmer’s purpose.”

Emerson Murphy-Hill, Andrew P. Black, Refactoring Tools:

Fitness for Purpose, IEEE Software, September 2008.628

628DOI: 10.1109/MS.2008.123

http://doi.ieeecomputersociety.org/10.1109/MS.2008.123

2008 800

“Over time, software systems suffer gradual quality decay

and therefore costs can rise if organizations fail to take

proactive countermeasures. Quality control is the first step to

avoiding this cost trap. Continuous quality assessments help

users identify quality problems early, when their removal is

still inexpensive; they also aid decision making by providing

an integrated view of a software system’s current status. As a

side effect, continuous and timely feedback helps developers

and maintenance personnel improve their skills and thereby

decreases the likelihood of future quality defects. To make

regular quality control feasible, it must be highly automated,

and assessment results must be presented in an aggregated

manner to avoid overwhelming users with data. “

2008 801

Florian Deissenboeck, Stefan Wagner, Markus Pizka, Benjamin

Hummel, Elmar Juergens, Benedikt Mas y Parareda, Tool

Support for Continuous Quality Control, IEEE Software,

September 2008.629

629DOI: 10.1109/MS.2008.129

http://doi.ieeecomputersociety.org/10.1109/MS.2008.129

2008 802

“Design teams rarely consider multiple solution ideas before

committing to one. They often forget that an even better idea

could be just around the corner, and consider alternative ideas

only when they don’t like the current one. Using

sketchboarding, design studio, or a combination of these two

techniques can let teams quickly ideate over many solutions.

They then have a chance to arrive at a solution that no one

individual had thought of.”

Jeff Patton, Consider Multiple Solutions, IEEE Software,

September 2008.630

630DOI: 10.1109/MS.2008.134

http://doi.ieeecomputersociety.org/10.1109/MS.2008.134

2008 803

“Software resource estimation methods and models have had

a major impact on successful software engineering practice.

They provide milestone budgets and schedules that help

projects determine when they are making satisfactory

progress and when they need corrective action. They help

decision makers analyze software cost-schedule-value

trade-offs and make decisions regarding investments,

outsourcing, COTS products, and legacy software phaseouts.

They help organizations prioritize investments in improving

software productivity, quality, and time to market. “

Ricardo Valerdi, Barry W. Boehm, Achievements and

Challenges in Cocomo-Based Software Resource Estimation,

IEEE Software, September 2008.631

631DOI: 10.1109/MS.2008.133

http://doi.ieeecomputersociety.org/10.1109/MS.2008.133

2008 804

“Despite various industry reports about the failure rates of

software projects, there’s still uncertainty about the actual

figures. Researchers performed a global Web survey of IT

departments in 2005 and 2007. The results suggest that the

software crisis is perhaps exaggerated and that most

software projects deliver. However, the overall project failure

rate, including cancelled and completed but poorly performing

projects, remains arguably high for an applied discipline.”

Khaled El Emam, A. Günes Koru, A Replicated Survey of IT

Software Project Failures, IEEE Software, September 2008.632

632DOI: 10.1109/MS.2008.107

http://doi.ieeecomputersociety.org/10.1109/MS.2008.107

2008 805

“Software developers often need to understand a large body

of unfamiliar code with little or no documentation, no

experts to consult, and little time to do it. … The most

common suggestions were to use a code navigation tool, use

a design recovery tool, use a debugger to step through the

code, create a runtime trace, use problem-based learning,

ask people for help, study the code from top down, and print

out all the code.”

Sukanya Ratanotayanon, Susan Elliott Sim, Inventive Tool Use

to Comprehend Big Code, IEEE Software, September 2008.633

633DOI: 10.1109/MS.2008.118

http://doi.ieeecomputersociety.org/10.1109/MS.2008.118

2008 806

“Every new line of code quickly becomes legacy. When that

legacy mounts, it forms a significantly massive pile of

software, which cannot be ignored. … what we can do

intentionally with such piles, from abandonment to evolution

and many things in between.”

Grady Booch, Nine Things You Can Do with Old Software, IEEE

Software, September 2008.634

634DOI: 10.1109/MS.2008.139

http://doi.ieeecomputersociety.org/10.1109/MS.2008.139

2008 807

“One member of a work team can decrease the whole team’s

productivity.”

Robert L. Glass, Negative Productivity and What to Do about

It, IEEE Software, September 2008.635

635DOI: 10.1109/MS.2008.121

http://doi.ieeecomputersociety.org/10.1109/MS.2008.121

2008 808

2008 809

“In the world of user-centered design thinking, Alan Cooper

is responsible for many of the tenets used in interaction

design practice today. Most notably, he introduced the use of

personas to distill and make relevant information about a

system’s users, information we subsequently use to drive

interaction design.”

Jeff Patton, A Conversation with Alan Cooper: The Origin of

Interaction Design, IEEE Software, November 2008.636

636DOI: 10.1109/MS.2008.142

http://doi.ieeecomputersociety.org/10.1109/MS.2008.142

2008 810

“Over the past 25 years, we’ve made great advances in

tooling, technologies, and techniques that make software

design more concrete. But design still requires careful

thought.”

Grady Booch, Back to the Future, IEEE Software, November

2008.637

637DOI: 10.1109/MS.2008.144

http://doi.ieeecomputersociety.org/10.1109/MS.2008.144

2008 811

“Many major technology breakthroughs happened before

1984: Milestones such as the IBM OS/360 and the

microprocessor, and even many still-relevant software

engineering practices, had been developed much earlier. So

what makes the recent 25 years unique? First, softwaremoved

from a few company desks to the lives of practically everyone

on the planet. The PC, the Internet, and mobile phones

showcase this tremendous evolution. Second, empirical

evaluations overcame opinions. Mary Shaw described the

eighties by stating, ‘Software engineering is not yet a true

discipline, but it has the potential to become one.’ In those

early days, a lot of technologies were just assembled and

delivered, but from the ’80s onward, engineers evaluated and

empirically assessed new technologies to judge their impact.”

2008 812

Christof Ebert, A Brief History of Software Technology, IEEE

Software, November 2008.638

638DOI: 10.1109/MS.2008.141

http://doi.ieeecomputersociety.org/10.1109/MS.2008.141

2008 813

“Today’s power tools enable us to cut code and test our

design ideas much more quickly. This is a significant

improvement. Yet the more code we create, the more

opportunity we have for it to grow unwieldy, inconsistent, and

unmaintainable. “

Rebecca J. Wirfs-Brock, Designing Then and Now, IEEE

Software, November 2008.639

639DOI: 10.1109/MS.2008.146

http://doi.ieeecomputersociety.org/10.1109/MS.2008.146

2008 814

“The increasing sophistication and use of software

measurement over the past 25 years … highlights four

obstacles to more effective use of measurement: dealing with

uncertainty, anticipating change, measuring ‘soft’

characteristics, and developing heuristics.”

Shari Lawrence Pfleeger, Software Metrics: Progress after 25

Years?, IEEE Software, November 2008.640

640DOI: 10.1109/MS.2008.160

http://doi.ieeecomputersociety.org/10.1109/MS.2008.160

2008 815

“Opportunistic software systems development (OSSD) is an

approach in which developers meld together software pieces

that they have found. Most often they find unrelated software

components and systems that weren’t designed to work

together but that provide functionality they want to include in

a new system. Typically, in opportunistic development,

developers spend less effort developing software functionality

to meet particular requirements and more time developing

‘glue code’ and using other techniques for integrating the

various software pieces.”

Anatol W. Kark, Cornelius Ncube, Patricia Oberndorf,

Opportunistic Software Systems Development: Making

Systems from What’s Available, IEEE Software, November

2008.641

641DOI: 10.1109/MS.2008.153

http://doi.ieeecomputersociety.org/10.1109/MS.2008.153

2008 816

“Developing products and services pragmatically places

requirements on the relationship between the software

developer and the third-party functionality provider.”

Sjaak Brinkkemper, Slinger Jansen, Cetin Demir, Ivo Hunink,

Pragmatic and Opportunistic Reuse in Innovative Start-up

Companies, IEEE Software, November 2008.642

642DOI: 10.1109/MS.2008.155

http://doi.ieeecomputersociety.org/10.1109/MS.2008.155

2008 817

“Situated software, a type of opportunistic software, is

created by a small subset of users to fulfill a specific purpose.

For example, business users have been creating situated

software through mashups, which combine data from multiple

sources on internal systems or the Internet.”

Grace A. Lewis, Soumya Simanta, Dennis B. Smith, Sriram

Balasubramaniam, Situated Software: Concepts, Motivation,

Technology, and the Future, IEEE Software, November

2008.643

643DOI: 10.1109/MS.2008.159

http://doi.ieeecomputersociety.org/10.1109/MS.2008.159

2008 818

“Using opportunistic software development principles in

computer engineering education encourages students to be

creative and to develop solutions that cross the boundaries of

diverse technologies.”

Dragan Gaševic, Željko Obrenovic, Anton Eliëns, Stimulating

Creativity through Opportunistic Software Development, IEEE

Software, November 2008.644

644DOI: 10.1109/MS.2008.162

http://doi.ieeecomputersociety.org/10.1109/MS.2008.162

2009

2009 820

2009 821

“Few software practices are as important as testing, and

testing techniques are amenable to measurement and

reasoning about their effectiveness. Because they’re aimed at

removing faults, measuring the number and type of such

removed faults seems like a natural part of applying these

techniques.”

Ana Moreno, Sira Vegas, Natalia Juristo, Forrest Shull, A Look

at 25 Years of Data, IEEE Software, January 2009.645

645DOI: 10.1109/MS.2009.2

http://doi.ieeecomputersociety.org/10.1109/MS.2009.2

2009 822

“Becoming a better designer means getting better at what we

do now while not getting lulled into accepting the status quo.

To stay effective as designers, we need to continue to learn,

adapt, keep an open mind, and work to perfect our craft.”

Rebecca J. Wirfs-Brock, Designing in the Future, IEEE

Software, January 2009.646

646DOI: 10.1109/MS.2009.7

http://doi.ieeecomputersociety.org/10.1109/MS.2009.7

2009 823

“Today, many software projects are geographically

distributed, so software managers must know how to manage

distributed teams. For example, they need to know how to

build teams across sites, how to break down and distribute

tasks, how to share knowledge across time, space, and

cultural differences, and how to coordinate work to produce

coherent outcomes.”

Lars Mathiassen, John Stouby Persson, A Process for

Managing Risks in Distributed Teams, IEEE Software, January

2009.647

647DOI: 10.1109/MS.2009.157

http://doi.ieeecomputersociety.org/10.1109/MS.2009.157

2009 824

“Modern programming environments automatically collect

lots of data on software development, notably changes and

defects. The field of mining software archives is concerned

with the automated extraction, collection, and abstraction of

information from this data.”

Andreas Zeller, Nachiappan Nagappan, Thomas Zimmermann,

Guest Editors’ Introduction: Mining Software Archives, IEEE

Software, January 2009.648

648DOI: 10.1109/MS.2009.14

http://doi.ieeecomputersociety.org/10.1109/MS.2009.14

2009 825

“Software archives such as source code version-control

systems and issue-tracking systems (for bugs and change

requests) are rich sources to examine what changes have

what impact on the software.”

Harald C. Gall, Martin Pinzger, Beat Fluri, Change Analysis with

Evolizer and ChangeDistiller, IEEE Software, January 2009.649

649DOI: 10.1109/MS.2009.6

http://doi.ieeecomputersociety.org/10.1109/MS.2009.6

2009 826

“In 1994, Standish published the Chaos report that showed a

shocking 16 percent project success. This and renewed

figures by Standish are often used to indicate that project

management of application software development is in

trouble. However, Standish’s definitions have four major

problems. First, they’re misleading because they’re based

solely on estimation accuracy of cost, time, and functionality.

Second, their estimation accuracy measure is one-sided,

leading to unrealistic success rates. Third, steering on their

definitions perverts good estimation practice. Fourth, the

resulting figures are meaningless because they average

numbers with an unknown bias, numbers that are introduced

by different underlying estimation processes.”

Chris Verhoef, J. Laurenz Eveleens, The Rise and Fall of the

Chaos Report Figures, IEEE Software, January 2009.650

650DOI: 10.1109/MS.2009.154

http://doi.ieeecomputersociety.org/10.1109/MS.2009.154

2009 827

“As software’s impact and influence grows, so do the

possibilities for innovation and increasing the competitive

advantage through software.”

Steven Kunsman, Samuel Fricker, Kenneth Palm, Tony

Gorschek, A Lightweight Innovation Process for

Software-Intensive Product Development, IEEE Software,

January 2009.651

651DOI: 10.1109/MS.2009.164

http://doi.ieeecomputersociety.org/10.1109/MS.2009.164

2009 828

“Mining software repositories using analytics-driven

dashboards provides a unifying mechanism for

understanding, evaluating, and predicting the development,

management, and economics of large-scale systems and

processes. Dashboards enable measurement and interactive

graphical displays of complex information and support

flexible analytic capabilities for user customizability and

extensibility.”

Richard W. Selby, Analytics-Driven Dashboards Enable

Leading Indicators for Requirements and Designs of

Large-Scale Systems, IEEE Software, January 2009.652

652DOI: 10.1109/MS.2009.4

http://doi.ieeecomputersociety.org/10.1109/MS.2009.4

2009 829

“Developers should factor rework into sizing and productivity

calculations when estimating software effort. Reworked code

is software created during development that doesn’t exist in

the final build. Using lines of code as a sizing metric is helpful

when estimating projects with similar domains, platforms,

processes, development teams, and coding constraints.”

Edmund Morozoff, Using a Line-of-Code Metric to Understand

Software Rework, IEEE Software, January 2009.653

653DOI: 10.1109/MS.2009.160

http://doi.ieeecomputersociety.org/10.1109/MS.2009.160

2009 830

“Software-intensive systems, like bridges and societies, are

subject to collapse. Collapse isn’t necessarily inevitable,

however, but avoiding it requires active, vigorous, and

intentional intervention by the system’s architects.”

Grady Booch, Not with a Bang, IEEE Software, January

2009.654

654DOI: 10.1109/MS.2009.18

http://doi.ieeecomputersociety.org/10.1109/MS.2009.18

2009 831

“Usability is a growing issue for developers of scientific

software. Scientists seeking software to support scientific

discovery and funding bodies seeking better return on

investment increase the pressure to produce scientific

software that has an impact beyond a limited set of users

(that is, scientists in a single lab).”

Jason R. Swedlow, David Sloan, Peter Gregor, Xinyi Jiang,

Catriona Macaulay, Paula Forbes, Scott Loynton, Usability and

User-Centered Design in Scientific Software Development,

IEEE Software, January 2009.655

655DOI: 10.1109/MS.2009.27

http://doi.ieeecomputersociety.org/10.1109/MS.2009.27

2009 832

2009 833

“At the core of cloud computing is a simple concept: software

as a service, or SaaS. Whether the underlying software is an

application, application component, platform, framework,

environment, or some other soft infrastructure for composing

applications to be delivered as a service on the Web, it’s all

software in the end. But the simplicity ends there. Just a step

away from that core, a complex concoction of paradigms,

concepts, and technologies envelop cloud computing.”

Hakan Erdogmus, Cloud Computing: Does Nirvana Hide

behind the Nebula?, IEEE Software, March 2009.656

656DOI: 10.1109/MS.2009.31

http://doi.ieeecomputersociety.org/10.1109/MS.2009.31

2009 834

“Given that useful knowledge in software engineering has a

half-life of about five years, reading remains an excellent way

to replenish this vanishing resource for the diligent software

engineer.”

Philippe Kruchten, You Are What You Read, IEEE Software,

March 2009.657

657DOI: 10.1109/MS.2009.55

http://doi.ieeecomputersociety.org/10.1109/MS.2009.55

2009 835

“Successful software-intensive systems are generally quite

innovative, as evidenced by their success. Although their

architectures will, over time, converge to a stable point, this

does not mean that innovation stops. Rather, for any such

system to remain vibrant and relevant, innovation must

proceed simultaneously at many levels.”

Grady Booch, The Resting Place of Innovation, IEEE Software,

March 2009.658

658DOI: 10.1109/MS.2009.53

http://doi.ieeecomputersociety.org/10.1109/MS.2009.53

2009 836

“Capturing software design knowledge is important because

it tends to evaporate as software systems evolve. This has

severe consequences for many software projects. To

counteract this phenomenon, effective, systematic

documentation of design knowledge is important.”

Uwe Zdun, Guest Editor’s Introduction: Capturing Design

Knowledge, IEEE Software, March 2009.659

659DOI: 10.1109/MS.2009.37

http://doi.ieeecomputersociety.org/10.1109/MS.2009.37

2009 837

“Large software systems, developed over several years, are

the backbone of industries such as banking, retail,

transportation, and telecommunications. With multiple bug

fixes and feature enhancements, these systems gradually

deviate from the intended architecture and deteriorate into

unmanageable monoliths.”

Madhu K. Iyengar, Saravanan Sivagnanam, K. Rangarajan,

Shubha Ramachandran, G. Sathish Kumar, Santonu Sarkar,

Modularization of a Large-Scale Business Application: A Case

Study, IEEE Software, March 2009.660

660DOI: 10.1109/MS.2009.42

http://doi.ieeecomputersociety.org/10.1109/MS.2009.42

2009 838

“A decision view provides a useful complement to the

traditional sets of architectural views and viewpoints. It gives

an explanatory perspective that illuminates the reasoning

process itself and not solely its results. The decision view

documents aspects of the architecture that are hard to

reverse-engineer from the software itself and that are often

left tacit.”

Philippe Kruchten, Juan Carlos Dueñas, Rafael Capilla, The

Decision View’s Role in Software Architecture Practice, IEEE

Software, March 2009.661

661DOI: 10.1109/MS.2009.52

http://doi.ieeecomputersociety.org/10.1109/MS.2009.52

2009 839

“We rarely see the traditional way of software development in

which one company handles design, production, sales,

delivery, and service. Business models, engineering life cycles,

distribution channels, and services have changed

dramatically. A key driver in these new value networks is open

source software (OSS). Worldwide companies in various

industries have invested in open source. Market leaders such

as Google, IBM, Microsoft, SAP, and Siemens as well as many

small companies turn to OSS for multiple reasons.”

Christof Ebert, Guest Editor’s Introduction: How Open Source

Tools Can Benefit Industry, IEEE Software, March 2009.662

662DOI: 10.1109/MS.2009.38

http://doi.ieeecomputersociety.org/10.1109/MS.2009.38

2009 840

“A software forge is a tool platform for collaborative software

development, similar to integrated CASE environments.

Unlike CASE tools, however, software forges have been

designed for the software development practices of the open

source community.”

Dirk Riehle, Tamir Menahem, Barak Naveh, John Ellenberger,

Boris Mikhailovski, Yuri Natchetoi, Thomas Odenwald, Open

Collaboration within Corporations Using Software Forges,

IEEE Software, March 2009.663

663DOI: 10.1109/MS.2009.44

http://doi.ieeecomputersociety.org/10.1109/MS.2009.44

2009 841

“Developing complex software can be difficult no matter how

good designers get at architecture, tooling, or technology.

Although agile techniques and practices vary, successful agile

designers I know are passionate about producing

high-quality incremental design solutions. “

Rebecca J. Wirfs-Brock, Designing with an Agile Attitude, IEEE

Software, March 2009.664

664DOI: 10.1109/MS.2009.32

http://doi.ieeecomputersociety.org/10.1109/MS.2009.32

2009 842

“One way to combine rigor and relevance in research might

be to perform applicability checks, in which focus groups

provide feedback on research projects.”

Robert L. Glass, Making Research More Relevant While Not

Diminishing Its Rigor, IEEE Software, March 2009.665

665DOI: 10.1109/MS.2009.40

http://doi.ieeecomputersociety.org/10.1109/MS.2009.40

2009 843

2009 844

“Superprofessionalism is a mode of conduct characterized by

seven central traits: focus on individual responsibility, acute

awareness, commitment to facts, resilience under pressure,

sense of fairness, attention to detail in perspective, and

pragmatism first.”

Hakan Erdogmus, The Seven Traits of Superprofessionals,

IEEE Software, July 2009.666

666DOI: 10.1109/MS.2009.107

http://doi.ieeecomputersociety.org/10.1109/MS.2009.107

2009 845

“Simple architectures have conceptual integrity and are

better than more complex ones. Continuous architectural

refactoring helps to converge a system to its practical and

optimal simplicity.”

Grady Booch, The Defenestration of Superfluous

Architectural Accoutrements, IEEE Software, July 2009.667

667DOI: 10.1109/MS.2009.105

http://doi.ieeecomputersociety.org/10.1109/MS.2009.105

2009 846

“Compliance to a professional society’s code of ethics carries

obligations beyond minimum standards of behavior. Members

of software engineering professional societies should also

serve the public interest and promote the common good.”

Duncan Hall, The Ethical Software Engineer, IEEE Software,

July 2009.668

668DOI: 10.1109/MS.2009.106

http://doi.ieeecomputersociety.org/10.1109/MS.2009.106

2009 847

“A framework for thinking about domain-specific languages

(DSLs) divides them into internal DSLs, external DSLs, and

language workbenches. In all cases, it’s important to have an

explicit semantic model so that they form a veneer over an

underlying library. DSLs are valuable for increasing

programmer productivity and improving communication with

domain experts.”

Martin Fowler, A Pedagogical Framework for Domain-Specific

Languages, IEEE Software, July 2009.669

669DOI: 10.1109/MS.2009.85

http://doi.ieeecomputersociety.org/10.1109/MS.2009.85

2009 848

“Domain-specific techniques provide a high-level

specification for software systems. The technology’s

foundations have been developed over the last few years.

However, domain-specific techniques aren’t a panacea, and

deciding whether investment in them is merited is an

important step in understanding their benefits.”

Jonathan Sprinkle, Diomidis Spinellis, Juha-Pekka Tolvanen,

Marjan Mernik, Guest Editors’ Introduction: What Kinds of

Nails Need a Domain-Specific Hammer?, IEEE Software, July

2009.670

670DOI: 10.1109/MS.2009.92

http://doi.ieeecomputersociety.org/10.1109/MS.2009.92

2009 849

“Maintenance in software-intensive systems is critical because

software often continuously evolves not only during

development but also after delivery, to meet users’

ever-changing needs. So, maintenance performance

significantly impacts software development productivity.”

Lan Cao, Matti Rossi, Balasubramaniam Ramesh, Are

Domain-Specific Models Easier to Maintain Than UML

Models?, IEEE Software, July 2009.671

671DOI: 10.1109/MS.2009.87

http://doi.ieeecomputersociety.org/10.1109/MS.2009.87

2009 850

“The single largest factor that led to a language not being

used was when organizations gave the language design task

to someone with insufficient experience in the problem

domain.”

Steven Kelly, Risto Pohjonen, Worst Practices for

Domain-Specific Modeling, IEEE Software, July 2009.672

672DOI: 10.1109/MS.2009.109

http://doi.ieeecomputersociety.org/10.1109/MS.2009.109

2009 851

“Reusing DSLs is hard, however, because they’re often

designed to precisely describe a single domain or concern. A

new approach uses techniques from software product lines

(SPLs) to improve the reusability of a DSL, DSL composition,

or supporting tool by providing traceability of language

concepts to DSL design.”

Sumant Tambe, Jules White, Jeff Gray, James H. Hill, Aniruddha

S. Gokhale, Douglas C. Schmidt, Improving Domain-Specific

Language Reuse with Software Product Line Techniques,

IEEE Software, July 2009.673

673DOI: 10.1109/MS.2009.95

http://doi.ieeecomputersociety.org/10.1109/MS.2009.95

2009 852

“Although lessons-learned activities aid software process

improvement, few IT industry organizations regularly and

adequately conduct them.”

Anders Baaz, Anna Sandberg, Agneta Nilsson, Lena Holmberg,

Helena Olsson, Appreciating Lessons Learned, IEEE Software,

July 2009.674

674DOI: 10.1109/MS.2009.198

http://doi.ieeecomputersociety.org/10.1109/MS.2009.198

2009 853

“For the past 40 years… we’ve tortured ourselves over our

inability to finish a software project on time and on budget.

But … this never should have been the supreme goal. The

more important goal is transformation, creating software that

changes the world or that transforms a company or how it

does business. We’ve been rather successful at

transformation, often while operating outside our control

envelope. Software development is and always will be

somewhat experimental. The actual software construction

isn’t necessarily experimental, but its conception is. And this

is where our focus ought to be. It’s where our focus always

ought to have been.”

Tom DeMarco, Software Engineering: An Idea Whose Time

Has Come and Gone?, IEEE Software, July 2009.675

675DOI: 10.1109/MS.2009.101

http://doi.ieeecomputersociety.org/10.1109/MS.2009.101

2009 854

2009 855

“The review results suggest that despite some limitations,

agile development can improve job satisfaction, project

productivity, and customer satisfaction.”

Tore Dybâ, Torgeir Dingsøyr, What Do We Know about Agile

Software Development?, IEEE Software, September 2009.676

676DOI: 10.1109/MS.2009.145

http://doi.ieeecomputersociety.org/10.1109/MS.2009.145

2009 856

“Millions of people program to support their work but don’t

call themselves programmers. The field of end-user software

engineering is concerned with helping these people create

reliable, dependable, and reusable programs, without

distracting them from their primary tasks. “

Brad A. Myers, Robin Abraham, Andrew J. Ko, Margaret M.

Burnett, Guest Editors’ Introduction: End-User Software

Engineering, IEEE Software, September 2009.677

677DOI: 10.1109/MS.2009.129

http://doi.ieeecomputersociety.org/10.1109/MS.2009.129

2009 857

“People often write code to prototype, ideate, and discover.

To do this, they work opportunistically, emphasizing speed

and ease of development over code robustness and

maintainability. Quickly hacking a program together can

provide both practical and learning benefits for novices and

experts: professional programmers and designers prototype

to explore and communicate ideas, scientists program

laboratory instruments, and entrepreneurs assemble complex

spreadsheets to better understand their business.”

Joel Brandt, Philip J. Guo, Joel Lewenstein, and Scott R.

Klemmer, Mira Dontcheva, Writing Code to Prototype, Ideate,

and Discover, IEEE Software, September 2009.678

678DOI: 10.1109/MS.2009.147

http://doi.ieeecomputersociety.org/10.1109/MS.2009.147

2009 858

“Spreadsheets are popular end-user programming tools.

Many people use spreadsheet-computed values to make

critical decisions, so spreadsheets must be correct. Proven

software engineering principles can assist the construction

and maintenance of dependable spreadsheets.”

Martin Erwig, Software Engineering for Spreadsheets, IEEE

Software, September 2009.679

679DOI: 10.1109/MS.2009.140

http://doi.ieeecomputersociety.org/10.1109/MS.2009.140

2009 859

“Spreadsheet technology is central to the functioning of the

financial sector, but professionally created spreadsheets have

a high level of error, which highlights the need for innovative

supporting processes and tools. The current global financial

crisis will likely accelerate this need because anticipated

regulation will require novel, innovative risk management

methods and technologies that cover development, risk

assessment, review, and other spreadsheet activities. “

Alan Rust, Kevin McDaid, Test-Driven Development for

Spreadsheet Risk Management, IEEE Software, September

2009.680

680DOI: 10.1109/MS.2009.143

http://doi.ieeecomputersociety.org/10.1109/MS.2009.143

2009 860

“Using Selenium, Web acceptance-test designers have a tool

that programmatically reflects business structure much

better than protocol-level tools would, while avoiding the

pitfalls of capture-and-replay tools.”

Andreas Bruns, Dennis Wichmann, Andreas Kornstädt, Web

Application Tests with Selenium, IEEE Software, September

2009.681

681DOI: 10.1109/MS.2009.144

http://doi.ieeecomputersociety.org/10.1109/MS.2009.144

2009 861

2009 862

“Software developers are notorious for skimping on design

documentation, often eschewing it altogether. This trend has

led to claims that it is merely an impediment in the

fast-paced and highly pliable world of software development -

a useless vestige of old-style engineering that should be

eliminated altogether. … because of the complexity of

modern software systems and the cryptic nature of current

programming languages, good design documentation is not

only useful but vital. However, we must seek ways of adapting

it to suit the medium as well as the exceptionally dynamic

development process.”

Bran Selic, Agile Documentation, Anyone?, IEEE Software,

November 2009.682

682DOI: 10.1109/MS.2009.167

http://doi.ieeecomputersociety.org/10.1109/MS.2009.167

2009 863

“Software is developed by people, used by people, and

supports interaction among people. As such, human

characteristics and cooperation are central to modern

practical software construction.”

Janice Singer, Cleidson R. B. de Souza, Helen Sharp, Gina

Venolia, Li-Te Cheng, Guest Editors’ Introduction:

Cooperative and Human Aspects of Software Engineering,

IEEE Software, November 2009.683

683DOI: 10.1109/MS.2009.176

http://doi.ieeecomputersociety.org/10.1109/MS.2009.176

2009 864

“In the transformation from traditional

command-and-control management to collaborative

self-managing teams, the main challenges were the absence

of redundancy and conflict between team- and

individual-level autonomy.”

Tore Dybâ, Torgeir Dingsøyr, Nils Brede Moe, Overcoming

Barriers to Self-Management in Software Teams, IEEE

Software, November 2009.684

684DOI: 10.1109/MS.2009.182

http://doi.ieeecomputersociety.org/10.1109/MS.2009.182

2009 865

“Data showed that learning resources for APIs are critically

important and shed light on three issues: the need to discover

the design and rationale of the API when needed, the

challenge of finding credible usage API examples at the right

level of complexity, and the challenge of understanding

inexplicable API behavior.”

Martin P. Robillard, What Makes APIs Hard to Learn? Answers

from Developers, IEEE Software, November 2009.685

685DOI: 10.1109/MS.2009.193

http://doi.ieeecomputersociety.org/10.1109/MS.2009.193

2009 866

“Small to medium enterprises (SMEs) increasingly participate

in offshore software development. Key competitive SME

abilities include detecting market niches and deploying

highly flexible software development approaches. Therefore,

learning how offshoring affects such capabilities, which are

closely related to organizational learning, is crucial.”

Volker Wulf, Alexander Boden, Bernhard Nett, Operational and

Strategic Learning in Global Software Development, IEEE

Software, November 2009.686

686DOI: 10.1109/MS.2009.113

http://doi.ieeecomputersociety.org/10.1109/MS.2009.113

2009 867

“Our aspirations grow faster than our capabilities, so I don’t

expect software development to ‘get solved.’”

Mary Shaw, Continuing Prospects for an Engineering

Discipline of Software, IEEE Software, November 2009.687

687DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2009.172

https://doi.ieeecomputersociety.org/10.1109/MS.2009.172

2009 868

“Advice on courteousness and politeness in technical

communication is in short supply, yet this is needed when

developers communicate with other people. When discussing

technical problems, aim to encourage rather than complain,

focusing on technology issues rather than the people behind

them. Every email should tackle one topic and that topic

should be the subject line.”

Diomidis Spinellis, Basic Etiquette of Technical

Communication, IEEE Software, November 2009.688

688DOI: 10.1109/MS.2009.170

http://doi.ieeecomputersociety.org/10.1109/MS.2009.170

2009 869

“Process metrics can ignite strong opinions because they

represent an area where technical considerations bump up

against human aspects of software development. “

Forrest Shull, Medha Umarji, Measuring Developers: Aligning

Perspectives and Other Best Practices, IEEE Software,

November 2009.689

689DOI: 10.1109/MS.2009.180

http://doi.ieeecomputersociety.org/10.1109/MS.2009.180

2009 870

“In his final Loyal Opposition column for IEEE Software,

Robert Glass points out the continued need for testing

academic theories in practice and for practitioners to discuss

lessons learned. He also states that software estimation is a

deeply flawed activity and that software practitioners should

always remain open-minded.”

Robert L. Glass, Goodbye!, IEEE Software, November 2009.690

690DOI: 10.1109/MS.2009.175

http://doi.ieeecomputersociety.org/10.1109/MS.2009.175

2010

2010 872

2010 873

“The software project management body of knowledge is

gradually being renewed across the entire lifecycle. In the

conception phase, the focus is on fostering innovation

through new approaches such as business analysis and

crowdsourcing techniques. In the construction phase, the

rise of global software development has shrunk the world

and led to new approaches to risk management that take into

account factors such as cultural diversity. In the project

conclusion phase, new approaches to the evaluation of

project success are being introduced, such as project

retrospectives and intellectual capital reporting.”

John Favaro, Guest Editor’s Introduction: Renewing the

Software Project Management Life Cycle, IEEE Software,

January 2010.691

691DOI: 10.1109/MS.2010.9

http://doi.ieeecomputersociety.org/10.1109/MS.2010.9

2010 874

“Developing parallel applications is notoriously difficult, but

it’s even more complex for desktop applications. The added

difficulties primarily come from their interactive nature, where

users largely perceive their performance. Desktop

applications are typically developed with graphical toolkits

that in turn have limitations in regards to multithreading.”

Oliver Sinnen, Nasser Giacaman, Object-Oriented

Parallelisation of Java Desktop Programs, IEEE Software,

January 2010.692

692DOI: 10.1109/MS.2010.135

http://doi.ieeecomputersociety.org/10.1109/MS.2010.135

2010 875

“If you’re successful, stakeholders will trust you. However,

too much trust can be dangerous. Stakeholders can become

overdependent on your guidance, especially if they lack the

knowledge to specify requirements for the new system. “

Neil Maiden, Trust Me, I’m an Analyst, IEEE Software, January

2010.693

693DOI: 10.1109/MS.2010.22

http://doi.ieeecomputersociety.org/10.1109/MS.2010.22

2010 876

“Desktop software developers’ interest in graphics hardware

is increasing as a result of modern graphics cards’ capabilities

to act as compute devices that augment the main processor.

This capability means parallel computing is no longer a

dedicated task for the CPU. A trend toward heterogeneous

computing combines the main processor and graphics

processing unit (GPU).”

Frank Feinbube, Peter Troger, Andreas Polze, Joint Forces:

From Multithreaded Programming to GPU Computing, IEEE

Software, January 2010.694

694DOI: 10.1109/MS.2010.134

http://doi.ieeecomputersociety.org/10.1109/MS.2010.134

2010 877

“The drive to rapidly develop layered, interconnected, and

flexible systems has eclipsed consideration of resource costs.

Consequently, large Java applications suffer from runtime

bloat: a large and pervasive infrastructure tax, where simple

transactions require a few hundred thousand method calls,

and a server with 1 Gbyte of memory sometimes can only

support a few hundred users.”

Edith Schonberg, Nick Mitchell, Gary Sevitsky, Four Trends

Leading to Java Runtime Bloat, IEEE Software, January

2010.695

695DOI: 10.1109/MS.2010.7

http://doi.ieeecomputersociety.org/10.1109/MS.2010.7

2010 878

“Mobile devices are increasingly accepted as suitable media

for multimedia-rich applications. … the most popular

development platform options … Java ME, .NET Compact

Framework, Flash Lite, and Android.”

Damianos Gavalas, Daphne Economou, Development

Platforms for Mobile Applications: Status and Trends, IEEE

Software, January 2010.696

696DOI: 10.1109/MS.2010.155

http://doi.ieeecomputersociety.org/10.1109/MS.2010.155

2010 879

“Modern distributed software systems involve dynamic

operating conditions that pose engineering challenges to

traditional offline design. Multiagent systems engineering can

solve some of these problems by offering self-adaptive

features such as loose coupling, context sensitivity, and

robustness to failure.”

Michael Georgeff, Danny Weyns, Self-Adaptation Using

Multiagent Systems, IEEE Software, January 2010.697

697DOI: 10.1109/MS.2010.18

http://doi.ieeecomputersociety.org/10.1109/MS.2010.18

2010 880

“Architecture is just a collective hunch, a shared

hallucination, an assertion by a set of stakeholders on the

nature of their observable world, be it a world that is or a

world as they wish it to be.”

Grady Booch, Architecture as a Shared Hallucination, IEEE

Software, January 2010.698

698DOI: 10.1109/MS.2010.4

http://doi.ieeecomputersociety.org/10.1109/MS.2010.4

2010 881

2010 882

“Railroad tracks offer guidance and support. There are various

tools that can give our software the same handling. The main

tool for guiding the code’s direction is the language’s type

system. For values, the type system can help us by

establishing a separate type for each distinct class; for code,

interfaces and abstract classes ensure that we won’t forget

some crucial methods when we add functionality through a

new class. With domain-specific languages or even suitably

initialized data structures we can efficiently express exactly

what the designer intended and nothing more. At a higher

level, architectures that enforce a particular open-ended but

well-defined interface will also guide a software’s progress.

Finally, the most flexible track-laying approach is a

tool-supported software development process.”

2010 883

Diomidis Spinellis, Software Tracks, IEEE Software, March

2010.699

699DOI: 10.1109/MS.2010.56

http://doi.ieeecomputersociety.org/10.1109/MS.2010.56

2010 884

“In a typical client-server scenario, a server provides

valuable services to client applications that run remotely on

untrusted client computers. Typical examples are video on

demand, online games, voice-over-IP communications, and

many others. However, client-side users often hold

administrative privileges on their machines and could tamper

with the client application to fulfill the service in violation of

the service usage conditions or service agreements.

Guaranteeing client-code security is one of the most difficult

security problem to address.”

Paolo Tonella, Mariano Ceccato, CodeBender: Remote

Software Protection Using Orthogonal Replacement, IEEE

Software, March 2010.700

700DOI: 10.1109/MS.2010.158

http://doi.ieeecomputersociety.org/10.1109/MS.2010.158

2010 885

“Providing architecture as a service to application

developers. The approach is an effective way to implement

the architecture process especially, but not only, in the

context of agile development. In their role as stakeholders of

nonfunctional system qualities, architects prepare and

support developers by participating in coding activities and

play a key role in communicating the architecture throughout

the project’s lifetime.”

Roland Faber, Architects as Service Providers, IEEE Software,

March 2010.701

701DOI: 10.1109/MS.2010.25

http://doi.ieeecomputersociety.org/10.1109/MS.2010.25

2010 886

“Agile development delivers value quickly, using a series of

short-term goals based on immediate priorities. Architecture

grows value carefully, using a set of long-term objectives

based on fundamental principles. The two seem at odds, but

the architect can bring them together at four well-defined

points in agile projects: during project initiation by setting

architectural direction, through storyboarding by introducing

specific architectural tasks, within sprints by close

collaboration on challenging issues, and as working software

gets delivered by performing direct inspection.”

James Madison, Agile Architecture Interactions, IEEE

Software, March 2010.702

702DOI: 10.1109/MS.2010.27

http://doi.ieeecomputersociety.org/10.1109/MS.2010.27

2010 887

“Unintentionally violating open source software (OSS)

licenses by reusing OSS code is a serious problem for both

software companies and OSS developers. The simplest

intuitive way to identify such reuse is to measure code clones

- duplicated code fragments - between a suspected program

and an existing OSS program.”

Yuki Manabe, Satoshi Okahara, Kenichi Matsumoto, Akito

Monden, Guilty or Not Guilty: Using Clone Metrics to

Determine Open Source Licensing Violations, IEEE Software,

March 2010.703

703DOI: 10.1109/MS.2010.159

http://doi.ieeecomputersociety.org/10.1109/MS.2010.159

2010 888

“The evolution of software into services imposes certain

concerns in the form of expressing and accessing services.

The seamless proliferation of services demands a new kind of

software protection with respect to copyrights and moral

rights of service-based software to enable services’

widespread use.”

G.R. Gangadharan, Vincenzo D’Andrea, Managing Copyrights

and Moral Rights of Service-Based Software, IEEE Software,

March 2010.704

704DOI: 10.1109/MS.2010.161

http://doi.ieeecomputersociety.org/10.1109/MS.2010.161

2010 889

“Design tactics are a methodology architects can use to

master this challenge: choosing design solutions that are

simple, economic, and appropriate for resolving the

problems at hand.”

Frank Buschmann, Learning from Failure, Part III: On

Hammers and Nails, and Falling in Love with Technology and

Design, IEEE Software, March 2010.705

705DOI: 10.1109/MS.2010.47

http://doi.ieeecomputersociety.org/10.1109/MS.2010.47

2010 890

“How can an organization transition from several functionally

overlapping systems to just one? This scenario is common

after, for example, company acquisitions and mergers or as a

result of different units in an organization growing to the point

at which the two independent efforts must be synchronized to

continue.”

Ivica Crnkovi, Rikard Land, Oh Dear, We Bought Our

Competitor: Integrating Similar Software Systems, IEEE

Software, March 2010.706

706DOI: 10.1109/MS.2010.86

http://doi.ieeecomputersociety.org/10.1109/MS.2010.86

2010 891

“Enterprise architecture and technical architecture are

related yet different: whereas EA focuses on the architecture

of a business that uses software-intensive systems, TA

focuses on the architecture of the software-intensive systems

that are used by a business to makes its mission manifest.”

Grady Booch, Enterprise Architecture and Technical

Architecture, IEEE Software, March 2010.707

707DOI: 10.1109/MS.2010.42

http://doi.ieeecomputersociety.org/10.1109/MS.2010.42

2010 892

2010 893

“Web 2.0 is less a new technology than a new way of using

technology.”

José Manuel Torres, Nicolás Serrano, Web 2.0 for

Practitioners, IEEE Software, May 2010.708

708DOI: 10.1109/MS.2010.84

http://doi.ieeecomputersociety.org/10.1109/MS.2010.84

2010 894

“Using software product lines to create a shared set of

features can increase productivity and reduce costs for

organizations. Successful software product lines share certain

commonalities but also differ in certain ways, depending on

diverse aspects of the products and the product lines

themselves.”

Kentaro Yoshimura, Paul Jensen, Dirk Muthig, John D.

McGregor, Guest Editors’ Introduction: Successful Software

Product Line Practices, IEEE Software, May 2010.709

709DOI: 10.1109/MS.2010.74

http://doi.ieeecomputersociety.org/10.1109/MS.2010.74

2010 895

“We characterize two strategic pitfalls that repeatedly occur:

failure to recognize that a software product line approach is a

business and technical strategy, and failure to manage the

unique aspects of governance for a product line and roll it out

appropriately.”

Linda M. Northrop, Lawrence G. Jones, Clearing the Way for

Software Product Line Success, IEEE Software, May 2010.710

710DOI: 10.1109/MS.2010.71

http://doi.ieeecomputersociety.org/10.1109/MS.2010.71

2010 896

“Successful product lines suffer over time from increasing

dependencies between the software assets that make up the

product line and, consequently, the teams associated with

these assets. This results in high coordination cost, slow

release cycles, and high system-level error density.”

Jan Bosch, Toward Compositional Software Product Lines,

IEEE Software, May 2010.711

711DOI: 10.1109/MS.2010.32

http://doi.ieeecomputersociety.org/10.1109/MS.2010.32

2010 897

“Product line scoping is the process of determining which of

an organization’s products, features, and domains would find

systematic reuse economically useful.”

Isabel John, Using Documentation for Product Line Scoping,

IEEE Software, May 2010.712

712DOI: 10.1109/MS.2010.34

http://doi.ieeecomputersociety.org/10.1109/MS.2010.34

2010 898

“JavaScript is often seen as a toy language. Yet, it offers a

powerful mix of interesting language features based on

functional programming, prototyping, and mutable objects.

Web 2.0 apps use JavaScript extensively to realize

sophisticated client-side functionality. Taken this into account,

it isn’t surprising that JavaScript made it to the top 10 in a

survey on the most popular programming languages. “

Holger M. Kienle, It’s About Time to Take JavaScript (More)

Seriously, IEEE Software, May 2010.713

713DOI: 10.1109/MS.2010.76

http://doi.ieeecomputersociety.org/10.1109/MS.2010.76

2010 899

“Refactoring was originally conceived as a technique for

enhancing the design of an existing code base by applying

small behavior-preserving transformations to the code. …

discuss how to improve the usability of a Web application by

applying refactoring on its design structure. “

Gustavo Rossi, Alejandra Garrido, Damiano Distante,

Refactoring for Usability in Web Applications, IEEE Software,

May 2010.714

714DOI: 10.1109/MS.2010.114

http://doi.ieeecomputersociety.org/10.1109/MS.2010.114

2010 900

“What are the top five properties that make a software design

elegant? … we explore … five properties leading architects

have found useful: economy, visibility, spacing, symmetry,

and emergence.”

Frank Buschmann, Kevlin Henney, Five Considerations for

Software Architecture, Part 1, IEEE Software, May 2010.715

715DOI: 10.1109/MS.2010.72

http://doi.ieeecomputersociety.org/10.1109/MS.2010.72

2010 901

“Developing concurrent software is hard. Testing concurrent

software is harder. “

Sebastian Burckhardt, Madan Musuvathi, Shaz Qadeer, Peli de

Halleux, Thomas Ball, Predictable and Progressive Testing of

Multithreaded Code, IEEE Software, May 2010.716

716DOI: 10.1109/MS.2010.64

http://doi.ieeecomputersociety.org/10.1109/MS.2010.64

2010 902

“An architectural review serves several purposes: to gain

confidence in the design, to reason about alternatives, to

attend to architectural rot. The process of such a review

involves the interplay of design decisions, scenarios, and

forces on the system.”

Grady Booch, Architecture Reviews, IEEE Software, May

2010.717

717DOI: 10.1109/MS.2010.68

http://doi.ieeecomputersociety.org/10.1109/MS.2010.68

2010 903

2010 904

“The cloud-computing paradigm is characterized by

transactional resource acquisition… nonfederated resource

provisioning… a metered resource.”

Panos Louridas, Up in the Air: Moving Your Applications to the

Cloud, IEEE Software, July 2010.718

718DOI: 10.1109/MS.2010.109

http://doi.ieeecomputersociety.org/10.1109/MS.2010.109

2010 905

“Evolving and maintaining software-intensive systems is

critical, and, consequently, most developers are involved in

maintaining, incrementally enhancing, and adapting existing

systems.”

Yann-Gaël Guehénéuc, Maja D’Hondt, Juan Fernández-Ramil,

Tom Mens, Guest Editors’ Introduction: Software Evolution,

IEEE Software, July 2010.719

719DOI: 10.1109/MS.2010.100

http://doi.ieeecomputersociety.org/10.1109/MS.2010.100

2010 906

“Despite growth in the popularity of desktop systems, Web

applications, and mobile computing, mainframe systems

remain the dominant force in large-scale enterprise

computing. Although they’re sometimes referred to as ‘the

dinosaurs of computing,’ even mainframe systems must

adapt to changing circumstances to survive.”

Serge Demeyer, Joris Van Geet, Reverse Engineering on the

Mainframe: Lessons Learned from ‘In Vivo’ Research, IEEE

Software, July 2010.720

720DOI: 10.1109/MS.2010.65

http://doi.ieeecomputersociety.org/10.1109/MS.2010.65

2010 907

“Architecture evaluations offer many benefits, including the

early detection of problems and a better understanding of a

system’s possibilities. … the lightweight sanity check for

implemented architectures (LiSCIA) evaluation method … can

be used out of the box to perform a first architectural

evaluation of a system. … By periodically performing this

check, developers and project managers can control the

implemented architecture’s erosion as the system (and its

requirements) evolves over time.”

Eric Bouwers, Arie van Deursen, A Lightweight Sanity Check

for Implemented Architectures, IEEE Software, July 2010.721

721DOI: 10.1109/MS.2010.60

http://doi.ieeecomputersociety.org/10.1109/MS.2010.60

2010 908

“Software is key to commercial magnetic resonance imaging

(MRI) scanners, the medical devices that make images of the

living human body for clinical purposes.”

Joop van der Linden, Lennart Hofland, Software in MRI

Scanners, IEEE Software, July 2010.722

722DOI: 10.1109/MS.2010.106

http://doi.ieeecomputersociety.org/10.1109/MS.2010.106

2010 909

“All complex systems fail, by some measure of the word ‘fail,’

with consequences ranging from benign to catastrophic.”

Grady Booch, Systems Architecture, IEEE Software, July

2010.723

723DOI: 10.1109/MS.2010.107

http://doi.ieeecomputersociety.org/10.1109/MS.2010.107

2010 910

2010 911

“The top questions were Agile and large projects. What

factors can break self-organization? Do teams really need to

always be collocated to collaborate effectively? Architecture

and agile—how much design is enough for different classes of

problem? Hard facts on costs of distribution (in $, £, €, and

so on). The correlation between release length and success

rate. What metrics can we use with minimal side-effects?

Distributed agile and trust—what happens around 8–12

weeks? Statistics and data about how much money/time is

saved by agile. Sociological studies—what were the

personalities in successful/failed agile teams?”

Helen Sharp, Sallyann Freudenberg, The Top 10 Burning

Research Questions from Practitioners, IEEE Software,

September 2010.724

724DOI: 10.1109/MS.2010.129

http://doi.ieeecomputersociety.org/10.1109/MS.2010.129

2010 912

“A collection of coherent, often ideologically or theoretically

based abstractions constitutes a programming paradigm. …

Well-known examples include object-oriented, relational,

functional, constraint-based, theorem-proving, concurrent,

imperative, and declarative. Less well-known (or perhaps less

well-defined) examples include graphical, reflective,

context-aware, rule-based, and agent-oriented. … using just

one language technology and paradigm is becoming much

less common, replaced by multiparadigm programming in

which the heterogeneous application consists of several

subcomponents, each implemented with an appropriate

paradigm and able to communicate with other

subcomponents implemented with a different paradigm. “

2010 913

Dean Wampler, Tony Clark, Guest Editors’ Introduction:

Multiparadigm Programming, IEEE Software, September

2010.725

725DOI: 10.1109/MS.2010.119

http://doi.ieeecomputersociety.org/10.1109/MS.2010.119

2010 914

“Combining paradigms offers important benefits—for

example, OOP minimizes the conceptual gap between the

problem domain and the implementation in software, and

functional programming (FP) brings mathematical rigor and

robustness to computing, especially for concurrent

applications.”

Dean Wampler, Tony Clark, Guest Editors’ Introduction:

Multiparadigm Programming, IEEE Software, September

2010.726

726DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2010.119

https://doi.ieeecomputersociety.org/10.1109/MS.2010.119

2010 915

“Domain-specific languages (DSLs) are becoming a mature

application development tool that developers use to express

concerns. Multi-DSL applications comprise DSLs and host

language code. Exploiting the Ruby programming language’s

built-in support for the imperative, functional, and

object-oriented paradigm, extended with feature-oriented

programming …”

Sebastian Günther, Multi-DSL Applications with Ruby, IEEE

Software, September 2010.727

727DOI: 10.1109/MS.2010.91

http://doi.ieeecomputersociety.org/10.1109/MS.2010.91

2010 916

“Constraint programming (CP) is a young but rapidly

developing technology that supports the modeling and

solution of a wide range of planning, scheduling, search, and

optimization problems. The integration of CP concepts into

languages from other paradigms yields constraint-based

multiparadigm programming.”

Petra Hofstedt, Constraint-Based Object-Oriented

Programming, IEEE Software, September 2010.728

728DOI: 10.1109/MS.2010.89

http://doi.ieeecomputersociety.org/10.1109/MS.2010.89

2010 917

“Storing data the same way it’s used in the application would

simplify the programming model, making it easier to

decentralize data processing and, in turn, enable horizontal

scaling. Emerging NoSQL data-storage engines support this

strategy. Just like the application layer, the data-storage layer

can use multiple paradigms and store data in a way that’s

semantically closer to the corresponding domain models.”

Debasish Ghosh, Multiparadigm Data Storage for Enterprise

Applications, IEEE Software, September 2010.729

729DOI: 10.1109/MS.2010.87

http://doi.ieeecomputersociety.org/10.1109/MS.2010.87

2010 918

“To some, the phrase ‘agile architecture’ is an oxymoron. “

Grady Booch, An Architectural Oxymoron, IEEE Software,

September 2010.730

730DOI: 10.1109/MS.2010.117

http://doi.ieeecomputersociety.org/10.1109/MS.2010.117

2010 919

2010 920

“Techniques for requirements acquisition must find new ways

to gather information about brands and emotional responses

to them. Consumers will also likely have new types of service

requirements that must be captured, documented, and easily

traceable via new multidisciplinary techniques. … use

storyboards to capture the interplay between human

interaction and service design and so improve the quality of

service design delivery.”

Malcolm Sutherland, Neil Maiden, Storyboarding

Requirements, IEEE Software, November 2010.731

731DOI: 10.1109/MS.2010.147

http://doi.ieeecomputersociety.org/10.1109/MS.2010.147

2010 921

“It has long been recognized that one of the key benefits of

architecting our systems is managing their complexity. This

complexity arises from many factors: the needs and

constraints of the multitude of system stakeholders… the

political, social, and other factors from the environment in

which the system is embedded; the realities and constraints of

the system’s development, implementation, maintenance,

and operation in relation to available resources; and, of

course, the intended properties of the system itself. Taken

together, these diverse interests are a system’s stakeholder

concerns. “

Rich Hilliard, Paris Avgeriou, Patricia Lago, Guest Editors’

Introduction: Software Architecture: Framing Stakeholders’

Concerns, IEEE Software, November 2010.732

732DOI: 10.1109/MS.2010.142

http://doi.ieeecomputersociety.org/10.1109/MS.2010.142

2010 922

“Architectures come about through forces and needs other

than those captured in traditional requirements documents. A

business goal expresses why a system is being developed and

what stakeholders in the developing organization, the

customer organization, and beyond aspire to achieve through

its production and use.”

Len Bass, Paul Clements, The Business Goals Viewpoint, IEEE

Software, November 2010.733

733DOI: 10.1109/MS.2010.116

http://doi.ieeecomputersociety.org/10.1109/MS.2010.116

2010 923

“The initial presentation of new open source software

projects plays a potentially critical role in attracting

developers.”

Namjoo Choi, Indushobha Chengalur-Smith, Andrew Whitmore,

Managing First Impressions of New Open Source Software

Projects, IEEE Software, November 2010.734

734DOI: 10.1109/MS.2010.26

http://doi.ieeecomputersociety.org/10.1109/MS.2010.26

2010 924

“The architecture of a software-intensive system is best

reasoned about through multiple, nearly independent views.”

Grady Booch, The Elephant and the Blind Programmers, IEEE

Software, November 2010.735

735DOI: 10.1109/MS.2010.149

http://doi.ieeecomputersociety.org/10.1109/MS.2010.149

2011

2011 926

2011 927

“Watts Humphrey had a truly remarkable career, during which

he developed or contributed to the Personal Software

Process, Team Software Process, and Capability Maturity

Model Integration (CMMI) framework, among many other

contributions.”

Forrest Shull, Watts Humphrey: 4 July 1927 - 28 October

2010, IEEE Software, January 2011.736

736DOI: 10.1109/MS.2011.21

http://doi.ieeecomputersociety.org/10.1109/MS.2011.21

2011 928

“Developers, for the most part, don’t draw diagrams because

diagrams all too often don’t offer any fundamental value that

advances essential work. Yet, the problem remains that we

must visualize ultra-large complex systems that have no

directly observable physical manifestation.”

Grady Booch, Draw Me a Picture, IEEE Software, January

2011.737

737DOI: 10.1109/MS.2011.4

http://doi.ieeecomputersociety.org/10.1109/MS.2011.4

2011 929

“The computer industry is experiencing a major shift:

improved single processor performance via higher clock

rates has reached its technical limits due to overheating. …

exploiting the full potential of these processors requires

parallel programming.”

Kurt Keutzer, Wolfram Schulte, Victor Pankratius, Guest

Editors’ Introduction: Parallelism on the Desktop, IEEE

Software, January 2011.738

738DOI: 10.1109/MS.2011.8

http://doi.ieeecomputersociety.org/10.1109/MS.2011.8

2011 930

“Writing a correct parallel program is difficult; writing a highly

modular parallel program that performs well in a

multiprogrammed environment is even more so. Intel

Threading Building Blocks (Intel TBB), a key component of

Intel Parallel Building Blocks , is a widely used C++ template

library that helps developers achieve this goal.”

Michael Voss, Wooyoung Kim, Multicore Desktop

Programming with Intel Threading Building Blocks, IEEE

Software, January 2011.739

739DOI: 10.1109/MS.2011.12

http://doi.ieeecomputersociety.org/10.1109/MS.2011.12

2011 931

“Looking at software from a design perspective,

understanding software as a designed artifact, and

considering how design reaches into the whole software life

cycle can bring significant benefits both to our understanding

of what works in software design and to our approach to tools

and practices.”

Andre van der Hoek, Alex Baker, Harold Ossher, Marian Petre,

Guest Editors’ Introduction: Studying Professional Software

Design, IEEE Software, January 2011.740

740DOI: 10.1109/MS.2011.155

http://doi.ieeecomputersociety.org/10.1109/MS.2011.155

2011 932

“Software designers make decisions covering a wide variety

of aspects of the software to be designed through nested,

intertwined processes. Some of these dependencies among

design decisions might not be obvious, especially for people

who didn’t start with the project at the beginning of the

design process. Extending or altering an existing design

decision without fully understanding its dependencies might

result in a deterioration of the quality of the software design. “

Nobuto Matsubara, Kumiyo Nakakoji, Yoshinari Shirai, Yasuhiro

Yamamoto, Toward Unweaving Streams of Thought for

Reflection in Professional Software Design, IEEE Software,

January 2011.741

741DOI: 10.1109/MS.2011.125

http://doi.ieeecomputersociety.org/10.1109/MS.2011.125

2011 933

“Collaboration can enhance the output of early-stage design.

When software designers or architects work together to define

a problem and explore potential solutions, they find and

address design problems earlier and arrive at more innovative

and effective solutions than when they work alone.

Nonetheless, collaboration can fail without proper planning.”

Ania Dilmaghani, Jim Dibble, Strategies for Early-Stage

Collaborative Design, IEEE Software, January 2011.742

742DOI: 10.1109/MS.2011.124

http://doi.ieeecomputersociety.org/10.1109/MS.2011.124

2011 934

“A central task in design is deciding what artifact will best

satisfy the client’s needs, whether that requires creating an

artifact or choosing from existing alternatives. A design space

identifies and organizes the decisions that must be made,

together with the alternatives for those decisions, thereby

providing guidance for creating artifacts or a framework for

comparing them.”

Mary Shaw, The Role of Design Spaces, IEEE Software,

January 2011.743

743DOI: 10.1109/MS.2011.121

http://doi.ieeecomputersociety.org/10.1109/MS.2011.121

2011 935

“Software design is about a sequence of steps taken to

achieve a goal. Designers must plan their approach to

carrying out these steps. In studying designers at work, the

authors observed breadth- versus depth-first approaches to

design-space exploration and problem- versus solution-driven

approaches during the actual design.”

Hans van Vliet, Antony Tang, Design Strategy and Software

Design Effectiveness, IEEE Software, January 2011.744

744DOI: 10.1109/MS.2011.130

http://doi.ieeecomputersociety.org/10.1109/MS.2011.130

2011 936

“Architectural decisions are design decisions that are hard to

make or costly to change.”

Olaf Zimmermann, Architectural Decisions as Reusable

Design Assets, IEEE Software, January 2011.745

745DOI: 10.1109/MS.2011.3

http://doi.ieeecomputersociety.org/10.1109/MS.2011.3

2011 937

“Usability has a significant impact on the success of

software-centric systems and products. It relates to the actual

usage of a system, but also to its effective design and

development. Ultimately, failing to build usable software may

degrade a project’s ability to deliver in time, budget,

functionality, and quality.”

Frank Buschmann, Unusable Software Is Useless, Part 1, IEEE

Software, January 2011.746

746DOI: 10.1109/MS.2011.19

http://doi.ieeecomputersociety.org/10.1109/MS.2011.19

2011 938

2011 939

“The metaphor of ‘technical debt’ is useful for reasoning

about trading off software development activities: An exclusive

focus on implementing functionality can lead to code decay.

Since this deterioration of the system usually reflects a lack of

activity spent on refactoring, documentation, and other

aspects of the project infrastructure, it can be viewed as a

kind of debt that the developers owe the system.”

Forrest Shull, Perfectionists in a World of Finite Resources,

IEEE Software, March 2011.747

747DOI: 10.1109/MS.2011.38

http://doi.ieeecomputersociety.org/10.1109/MS.2011.38

2011 940

“Software protection is increasingly becoming an important

requirement for industrial software development, especially

when building systems for military defense, national

infrastructure, and medical informatics. Every software

vendor should be aware of the potential for attacks against

its products and the techniques available to mitigate these

attacks. Employing software protection techniques can mean

the difference between business survival and failure. “

Christian Collberg, Mikhail Atallah, Mariusz Jakubowski, Paolo

Falcarin, Guest Editors’ Introduction: Software Protection,

IEEE Software, March 2011.748

748DOI: 10.1109/MS.2011.34

http://doi.ieeecomputersociety.org/10.1109/MS.2011.34

2011 941

“Platforms such as Windows Azure let applications conduct

data-intensive cloud computing. Unit testing can help ensure

high-quality development of such applications, but the results

depend on test inputs and the cloud environment’s state.

Manually providing various test inputs and cloud states is

laborious and time-consuming. However, automated test

generation must simulate various cloud states to achieve

effective testing.”

Jian Lu, Linghao Zhang, Tao Xie, Nikolai Tillmann, Xiaoxing Ma,

Peli de Halleux, Environmental Modeling for Automated Cloud

Application Testing, IEEE Software, March 2011.749

749DOI: 10.1109/MS.2011.158

http://doi.ieeecomputersociety.org/10.1109/MS.2011.158

2011 942

“The large-scale, dynamic, and heterogeneous nature of cloud

computing poses numerous security challenges. But the

cloud’s main challenge is to provide a robust authorization

mechanism that incorporates multitenancy and virtualization

aspects of resources.”

Walid G. Aref, Arif Ghafoor, Saleh Basalamah, Abdulrahman A.

Almutairi, Muhammad I. Sarfraz, A Distributed Access Control

Architecture for Cloud Computing, IEEE Software, March

2011.750

750DOI: 10.1109/MS.2011.153

http://doi.ieeecomputersociety.org/10.1109/MS.2011.153

2011 943

“As applications and services migrate to the cloud, testing will

follow the same trend. Therefore, organizations must

understand the dynamics of cloud-based testing. … cloud

computing can make testing faster and enhance the delivery

of testing services. Cloud computing also highlights important

aspects of testing that require attention, such as integration

and interoperability.”

Ossi Taipale, Kari Smolander, Leah Riungu-Kalliosaari, Testing

in the Cloud: Exploring the Practice, IEEE Software, March

2011.751

751DOI: 10.1109/MS.2011.132

http://doi.ieeecomputersociety.org/10.1109/MS.2011.132

2011 944

“An experimental approach employs the Google App Engine

(GAE) for high-performance parallel computing. A generic

master-slave framework enables fast prototyping and

integration of parallel algorithms that are transparently

scheduled and executed on the Google cloud infrastructure.

Compared to Amazon Elastic Compute Cloud (EC2), GAE

offers lower resource-provisioning overhead and is cheaper

for jobs shorter than one hour.”

Radu Prodan, Simon Ostermann, Michael Sperk, Evaluating

High-Performance Computing on Google App Engine, IEEE

Software, March 2011.752

752DOI: 10.1109/MS.2011.131

http://doi.ieeecomputersociety.org/10.1109/MS.2011.131

2011 945

2011 946

“Keeping up to date with new software engineering methods,

practices, and tools is challenging in the best of times, and

made even more urgent by today’s tough economic climate.

… One way to save time is to take a look at only the best

content. Because we don’t always know ahead of time which

that will be, people find these shortcuts useful: finding content

from the established thought leaders in the field, rather than

from unknown voices with unknown quality; and reading

content where someone has already spent time aggregating

or summarizing the best stuff from other raw materials.”

Forrest Shull, How Do You Keep Up to Date?, IEEE Software,

May 2011.753

753DOI: 10.1109/MS.2011.57

http://doi.ieeecomputersociety.org/10.1109/MS.2011.57

2011 947

“Architecting a software-intensive system encompasses

technical elements, social considerations, and a technical

core. Most interesting systems start small and focus on

technical concerns, but once they grow to the point of

economic significance, social issues begin to loom large.”

Grady Booch, The Architect’s Journey, IEEE Software, May

2011.754

754DOI: 10.1109/MS.2011.66

http://doi.ieeecomputersociety.org/10.1109/MS.2011.66

2011 948

“In the last decade, software components have been of an

increased interest in software engineering community. The

appealing concepts of building systems from existing

components and reusing components, as well as the

appearance of new technologies that enabled the separation

of component development from system development,

attracted researchers and industry to develop and apply

principles of component-based software engineering.”

Ivica Crnkovic, Clemens Szyperski, Judith Stafford, Software

Components beyond Programming: From Routines to

Services, IEEE Software, May 2011.755

755DOI: 10.1109/MS.2011.62

http://doi.ieeecomputersociety.org/10.1109/MS.2011.62

2011 949

“Scientists commonly describe their data-processing systems

metaphorically as software pipelines. These pipelines input

one or more data sources and apply steps to transform the

data and create useful results. Although conceptually simple,

pipelines often adopt complex topologies and must meet

stringent quality-of-service requirements that stress the

software infrastructure used to construct the pipeline.”

Yan Liu, Adam Wynne, Jian Yin, Ian Gorton, Components in the

Pipeline, IEEE Software, May 2011.756

756DOI: 10.1109/MS.2011.23

http://doi.ieeecomputersociety.org/10.1109/MS.2011.23

2011 950

2011 951

“Software plays an increasingly important role in most

aspects of business. Many new business models for

software-intensive enterprises have arisen in the last decade,

ranging from selling software as a service to offshoring and

crowdsourcing. Governments and standards bodies have also

intervened to influence business models for stimulating

growth in the industry. The software business has also had

ancillary effects including the creation of new sectors such as

innovation management. The management of intellectual

property rights has become a more critical issue as software

is embedded in more and more products.”

Shari Lawrence Pfleeger, John Favaro, Guest Editors’

Introduction: Software as a Business, IEEE Software, July

2011.757

757DOI: 10.1109/MS.2011.77

http://doi.ieeecomputersociety.org/10.1109/MS.2011.77

2011 952

“Open innovation and the recent emphasis on client

involvement imply the emergence of hybrid software

licensing models combining the limited openness of source

code with traditional value appropriation logic. … The central

idea is that the vendor of commoditized products also licenses

source code to select clients, who become participants in and

subscribers to an ongoing closed development community.”

Mikko Riepula, Sharing Source Code with Clients: A Hybrid

Business and Development Model, IEEE Software, July

2011.758

758DOI: 10.1109/MS.2011.53

http://doi.ieeecomputersociety.org/10.1109/MS.2011.53

2011 953

“Cloud computing offers new ways for firms to operate in the

global market so that even small firms can compete in

markets traditionally dominated by multinational

corporations. “

Arto Ojala, Pasi Tyrväinen, Developing Cloud Business Models:

A Case Study on Cloud Gaming, IEEE Software, July 2011.759

759DOI: 10.1109/MS.2011.51

http://doi.ieeecomputersociety.org/10.1109/MS.2011.51

2011 954

“Refactoring is limited in what qualities it can help improve. It

can also do more harm than good when practiced informally

or ad hoc or when it’s used as a synonym for any form of

change in a system.”

Frank Buschmann, Gardening Your Architecture, Part 1:

Refactoring, IEEE Software, July 2011.760

760DOI: 10.1109/MS.2011.76

http://doi.ieeecomputersociety.org/10.1109/MS.2011.76

2011 955

2011 956

“Security and privacy are interdependent concepts. Each

impacts the other, but to say that they are alternatives is a

false dichotomy. Both are issues of human concern; their

policies and their risks may be made manifest in

software-intensive systems. Architecting a system that

attends to the needs of security and privacy is possible and

desirable, yet there are often unintended and unexpected

consequences in so doing.”

Grady Booch, Unintentional and Unbalanced Transparency,

IEEE Software, September 2011.761

761DOI: 10.1109/MS.2011.112

http://doi.ieeecomputersociety.org/10.1109/MS.2011.112

2011 957

“Successful development of video games hinges on

understanding the difficulties of ensuring the resulting

product is fun. Addressing this soft requirement,

incorporating nontrivial multimedia, and other

domain-specific concerns bring novel challenges to software

development. “

Paul Kruszewski, Clark Verbrugge, Guest Editors’ Introduction:

Engineering Fun, IEEE Software, September 2011.762

762DOI: 10.1109/MS.2011.98

http://doi.ieeecomputersociety.org/10.1109/MS.2011.98

2011 958

“Introducing reuse and software product line (SPL) concepts

into digital game-development processes isn’t a

straightforward task. This work presents a systematic process

for bridging SPLs to game development, culminating with

domain-specific languages and generators streamlined for

game subdomains.”

Geber L. Ramalho, Andre W.B. Furtado, Eduardo Santana de

Almeida, Andre L.M. Santos, Improving Digital Game

Development with Software Product Lines, IEEE Software,

September 2011.763

763DOI: 10.1109/MS.2011.101

http://doi.ieeecomputersociety.org/10.1109/MS.2011.101

2011 959

“The design of massively multiplayer online games (MMOGs)

is challenging because scalability, consistency, reliability, and

fairness must be achieved while providing good performance

and enjoyable gameplay.”

Jörg Kienzle, Alexandre Denault, Journey: A Massively

Multiplayer Online Game Middleware, IEEE Software,

September 2011.764

764DOI: 10.1109/MS.2011.88

http://doi.ieeecomputersociety.org/10.1109/MS.2011.88

2011 960

“Games must be emergent, constantly surprising players by

the possibilities they offer. However, emergence creates

unpredictability, preventing developers from verifying that

their games won’t lead to undesirable states. Worse still, even

when a bug is found, finding out how it occurred can be a

significant challenge.”

Chris Lewis, Jim Whitehead, Repairing Games at Runtime or,

How We Learned to Stop Worrying and Love Emergence, IEEE

Software, September 2011.765

765DOI: 10.1109/MS.2011.87

http://doi.ieeecomputersociety.org/10.1109/MS.2011.87

2011 961

2011 962

“If you give a hurricane meteorologist a giant pile of data

about a storm spinning in the middle of the Atlantic Ocean and

ask her to determine exactly where it will come ashore, she

can analyze the data, construct a detailed and accurate model

of the atmospheric conditions and weather patterns, run some

simulations, and come up with a forecast—two months after

the storm hits. It’ll probably be wrong, but not by much, a

moot point for the people in the storm’s path. The problem

isn’t with the forecast’s accuracy but with the time needed to

prepare it. On the other extreme, if given a satellite image and

a few points of other data—and a few minutes—a hurricane

meteorologist can prepare a forecast so uncertain it might as

well not even exist. There is a point where forecast accuracy

and timeliness overlap. The model favored by hurricane

meteorologists is to do just enough data acquisition and

analysis to be reasonably certain what the storm will do and

then start telling people to get ready.”

2011 963

Eric Richardson, What an Agile Architect Can Learn from a

Hurricane Meteorologist, IEEE Software, November 2011.766

766DOI: 10.1109/MS.2011.152

http://doi.ieeecomputersociety.org/10.1109/MS.2011.152

2011 964

“Software systems must continually evolve to meet ever

changing needs. However, such systems often become legacy

systems as a consequence of uncontrolled maintenance

combined with obsolete technology. To control maintenance

costs and preserve complex embedded business rules,

companies must evolve their legacy systems.”

Mario Piattini, Ignacio García-Rodriguez de Guzmán, Christof

Ebert, Ricardo Pérez-Castillo, Reengineering Technologies,

IEEE Software, November 2011.767

767DOI: 10.1109/MS.2011.145

http://doi.ieeecomputersociety.org/10.1109/MS.2011.145

2011 965

“There is complexity, and then there is organized complexity.

Pure complexity is chaotic; organized complexity is full of

patterns. Naming these patterns and respecting their

intention is the essence of architecture.”

Grady Booch, The Architecture of Small Things, IEEE

Software, November 2011.768

768DOI: 10.1109/MS.2011.148

http://doi.ieeecomputersociety.org/10.1109/MS.2011.148

2011 966

“Climate change is likely to be one of the defining global

issues of the 21st century. The past decade - the hottest in

recorded history - has witnessed countries around the world

struggling to deal with drought, heat waves, and extreme

weather. The sheer scale of the problem also makes it hard to

understand, predict, and solve. Climate science journals

regularly publish special issues on specific climate models,

typically timed to present results from a major new release of

a given model. However, these tend to focus on the new

science that the model enables, rather than to describe the

software and its development.”

Steve M. Easterbrook, Venkatramani Balaji, Reinhard Budich,

Paul N. Edwards, Guest Editors’ Introduction: Climate Change

- Science and Software, IEEE Software, November 2011.769

769DOI: 10.1109/MS.2011.141

http://doi.ieeecomputersociety.org/10.1109/MS.2011.141

2011 967

“The Clear Climate Code project rewrote GISTEMP, a legacy

software system used to produce an important global surface

temperature dataset. The focus of the project is on clarity:

making the source code as clear as possible to interested

people, to improve public understanding.”

David Jones, Nicholas Barnes, Clear Climate Code: Rewriting

Legacy Science Software for Clarity, IEEE Software, November

2011.770

770DOI: 10.1109/MS.2011.113

http://doi.ieeecomputersociety.org/10.1109/MS.2011.113

2011 968

“Coupled climate models exhibit scientific, numerical, and

architectural variability. This variability introduces

requirements that give rise to complexity.”

Spencer Rugaber, Sameer Ansari, Leo Mark, Rocky Dunlap,

Managing Software Complexity and Variability in Coupled

Climate Models, IEEE Software, November 2011.771

771DOI: 10.1109/MS.2011.114

http://doi.ieeecomputersociety.org/10.1109/MS.2011.114

2011 969

“Models play a central role for climate change policy-makers,

but they’re often so complex and computationally

demanding that experts must run them and interpret their

results. This reduces stakeholders’ ability to explore

alternative scenarios, increases perceptions of model

complexity and opacity, and can ultimately reduce public

confidence .”

Joshua Introne, Robert Laubacher, Thomas Malone, Enabling

Open Development Methodologies in Climate Change

Assessment Modeling, IEEE Software, November 2011.772

772DOI: 10.1109/MS.2011.115

http://doi.ieeecomputersociety.org/10.1109/MS.2011.115

2011 970

“Lateness is the most common form of software project

failure.”

Tom DeMarco, All Late Projects Are the Same, IEEE Software,

November 2011.773

773DOI: 10.1109/MS.2011.134

http://doi.ieeecomputersociety.org/10.1109/MS.2011.134

2012

2012 972

2012 973

“In model-based testing (MBT), manually selected algorithms

automatically and systematically generate test cases from a

set of models of the system under test or its environment.

Whereas test automation replaces manual test execution with

automated test scripts, MBT replaces manual test designs

with automated test designs and test generation. “

Ina Schieferdecker, Model-Based Testing, IEEE Software,

January 2012.774

774DOI: 10.1109/MS.2012.13

http://doi.ieeecomputersociety.org/10.1109/MS.2012.13

2012 974

“Architecture mastery is more than professional expertise in

modern software engineering methods and techniques. It is

mainly in how architects approach design. Particularly, the

‘things between things’ require the architect’s full attention:

domain concepts hidden between the lines of code;

interactions and interfaces residing between components; and

even choices between design options. This is the architect’s

territory, and successful architecture uncovers the things

‘in-between’ as early as possible, make them explicit, and

decide about them!”

Frank Buschmann, To Boldly Go Where No One Has Gone

Before, IEEE Software, January 2012.775

775DOI: 10.1109/MS.2012.18

http://doi.ieeecomputersociety.org/10.1109/MS.2012.18

2012 975

“Enormous advances in computing power and programming

environments have obscured the importance of algorithms,

one of the foundational pillars of software engineering. Today,

even university curricula too often pay only lip service to the

teaching of algorithmic fundamentals, reinforcing the popular

belief that their place at the core of a software engineer’s

education is past. Yet even today, the importance of

algorithms in software engineering has not diminished, and

the effects of neglect are evident everywhere in needlessly

inefficient industrial applications.”

Giuseppe Prencipe, John Favaro, Cesare Zavattari, Alessandro

Tommasi, Guest Editors’ Introduction: Algorithms and

Today’s Practitioner, IEEE Software, January 2012.776

776DOI: 10.1109/MS.2012.9

http://doi.ieeecomputersociety.org/10.1109/MS.2012.9

2012 976

“Formally speaking, mastering complexity requires a proof of

the asymptotic computation, storage, and communication

needs of a system. While we don’t always do formal

specifications and proofs of the properties of our algorithms,

the underlying behavior of the algorithms factors into our

capacity modeling—and therefore our capital and operational

expense planning—in a fundamental way.”

John Favaro, Excellence in Search: An Interview with David

Chaiken, IEEE Software, January 2012.777

777DOI: 10.1109/MS.2012.7

http://doi.ieeecomputersociety.org/10.1109/MS.2012.7

2012 977

“Conway’s law, also called the mirroring hypothesis, predicts

that a development organization will inevitably design

systems that mirror its organizational communication

structure.”

Marcelo Cataldo, Irwin Kwan, Daniela Damian, Conway’s Law

Revisited: The Evidence for a Task-Based Perspective, IEEE

Software, January 2012.778

778DOI: 10.1109/MS.2012.3

http://doi.ieeecomputersociety.org/10.1109/MS.2012.3

2012 978

2012 979

“The increasing pervasiveness of cloud computing is

changing the state of the practice in software testing. …

interview with James Whittaker… covers key technology

changes, such as more pervasive access to monitoring

frameworks, the ability to aggregate and act on feedback

directly from massive user communities (the ‘crowdsourcing’

of quality assurance), and the ability to know the exact

machine configuration when bugs are discovered.”

Forrest Shull, A Brave New World of Testing? An Interview

with Google’s James Whittaker, IEEE Software, March

2012.779

779DOI: 10.1109/MS.2012.23

http://doi.ieeecomputersociety.org/10.1109/MS.2012.23

2012 980

“There comes a point of no return in the life of every

successful software-intensive system, a point where you can

no longer place a pile of your best developers at one end of a

lever and expect them to move the world. Rather, you must

come to realize that putting piles of developers at the end of

even the longest lever is no longer the right tool to use.

Crossing that point while still preserving the values and the

tribal memory of your organization’s development culture

requires some serious adult supervision.”

Grady Booch, Facing Future, IEEE Software, March 2012.780

780DOI: 10.1109/MS.2012.29

http://doi.ieeecomputersociety.org/10.1109/MS.2012.29

2012 981

“Cloud computing is a new paradigm for software systems

where applications are divided into sets of composite

services hosted on leased, highly distributed platforms.

There are many new software engineering challenges in

building effective cloud-based software applications.”

Jacky Keung, Gerald Kaefer, Anna Liu, John Grundy, Guest

Editors’ Introduction: Software Engineering for the Cloud,

IEEE Software, March 2012.781

781DOI: 10.1109/MS.2012.31

http://doi.ieeecomputersociety.org/10.1109/MS.2012.31

2012 982

“There is broad consensus that architects should code. Yet

the challenging question is: how can architects program

without being lost in myriads of local code details? … Agile

practices help architects to balance their coding activities

with other duties, allowing them to be in control of the amount

of time they spend on programming and the concerns and

system parts on which they program.”

Frank Buschmann, Jörg Bartholdt, Code Matters!, IEEE

Software, March 2012.782

782DOI: 10.1109/MS.2012.27

http://doi.ieeecomputersociety.org/10.1109/MS.2012.27

2012 983

“A package management system organizes and simplifies the

installation and maintenance of software by standardizing and

organizing the production and consumption of software

collections. As a software developer, you can benefit from

package managers in two ways: through a rich and stable

development environment and through friction-free reuse.

Promisingly, the structure that package managers bring both

to the tools we use in our development process and the

libraries we reuse in our products ties nicely with the recent

move emphasizing DevOps (development operations) as an

integration between software development and IT operations.”

Diomidis Spinellis, Package Management Systems, IEEE

Software, March 2012.783

783DOI: 10.1109/MS.2012.38

http://doi.ieeecomputersociety.org/10.1109/MS.2012.38

2012 984

“Almost everyone agrees that there is a gender gap in

computer science, where there are far too few females

participating in the field. But does that gap occur in the whole

of the field of computing? This sounding board explores the

notion that the gap is unique to CS, and that any solution to

the problem must occur within that field and not the broader

field of computing.”

Robert L. Glass, The Gender Gap: Is It a Computing Problem

or Simply a Computer Science Problem?, IEEE Software,

March 2012.784

784DOI: 10.1109/MS.2012.44

http://doi.ieeecomputersociety.org/10.1109/MS.2012.44

2012 985

2012 986

“Even the fanciest videoconferencing or 3G holography can’t

overcome the fundamental time-zone problem— that it’s

sleep time on the other side of the world. Consequently, no

miracle technology will overcome time-zone differences.”

Christof Ebert, Rafael Prikladnicki, Sabrina Marczak, Erran

Carmel, Technologies to Support Collaboration across Time

Zones, IEEE Software, May 2012.785

785DOI: 10.1109/MS.2012.68

http://doi.ieeecomputersociety.org/10.1109/MS.2012.68

2012 987

“Typically, organizations face conflicting objectives, with

compliance policies possibly hindering innovation, slowing

down the product development process, or making the whole

process most costly. The goal of software engineering for

compliance is to bridge the gap between the software

engineering community and the compliance community.”

Ayse Bener, Uwe Zdun, Erlinda L. Olalia-Carin, Guest Editors’

Introduction: Software Engineering for Compliance, IEEE

Software, May 2012.786

786DOI: 10.1109/MS.2012.63

http://doi.ieeecomputersociety.org/10.1109/MS.2012.63

2012 988

“Ensuring compliance to laws, regulations, and standards in a

constantly changing business environment is a major

challenge for companies. So, organizations have an increasing

need for systematic approaches to manage compliance

throughout the business process (BP) life cycle.”

Michael P. Papazoglou, Amal Elgammal, Willem-Jan van den

Heuvel, Oktay Turetken, Capturing Compliance Requirements:

A Pattern-Based Approach, IEEE Software, May 2012.787

787DOI: 10.1109/MS.2012.45

http://doi.ieeecomputersociety.org/10.1109/MS.2012.45

2012 989

“The changing global business environment and continued

introduction of new technologies are significantly affecting

organizations’ privacy practices. In this environment,

privacy-enhancing technology (PET) often becomes a key to

protecting personal information.”

David Pelkola, A Framework for Managing Privacy-Enhancing

Technology, IEEE Software, May 2012.788

788DOI: 10.1109/MS.2012.47

http://doi.ieeecomputersociety.org/10.1109/MS.2012.47

2012 990

“Leadership is the key for architects to balance all their

activities and duties with the interests of different

stakeholders without losing control of the architecture under

development. They must have a clear vision and strict focus

on key aspects of success. All their activities should be

goal-driven and in direct cooperation and interaction with the

relevant stakeholder groups.”

Frank Buschmann, A Week in the Life of an Architect, IEEE

Software, May 2012.789

789DOI: 10.1109/MS.2012.55

http://doi.ieeecomputersociety.org/10.1109/MS.2012.55

2012 991

“Git is a distributed revision control system available on all

mainstream development platforms through a free software

license. An important difference of git over its older ancestors

is that it elevates the software’s revisions to first-class

citizens. “

Diomidis Spinellis, Git, IEEE Software, May 2012.790

790DOI: 10.1109/MS.2012.61

http://doi.ieeecomputersociety.org/10.1109/MS.2012.61

2012 992

2012 993

“Smart mobile devices have had a huge impact on the world

today with new apps being produced at a prodigious rate. How

we got to this point has a lot to do with the ease of use that

manufacturers and app developers have achieved, which

includes aspects such as quick response time, intuitive

interfaces, and well-designed functionality.”

Forrest Shull, Designing a World at Your Fingertips: A Look at

Mobile User Interfaces, IEEE Software, July 2012.791

791DOI: 10.1109/MS.2012.81

http://doi.ieeecomputersociety.org/10.1109/MS.2012.81

2012 994

“Computing has transformed humanity in ways that we have

only begun to metabolize. Computing amplifies what we

celebrate most about being human, but it also has the

capacity to magnify that which we mourn. Exploring the story

of computing has value, for an educated populace is far more

able to reconcile its past, reason about its present, and be

intentional about its future.”

Grady Booch, The Human Experience, IEEE Software, July

2012.792

792DOI: 10.1109/MS.2012.103

http://doi.ieeecomputersociety.org/10.1109/MS.2012.103

2012 995

“Smartphones aren’t very ‘smart’ without the software apps

that give them their usability and versatility. Apps, like all

software, need some degree of guidance, regulation, and

measurement to ensure a user is receiving proper

functionality and quality of service.”

Jeffrey Voas, J. Bret Michael, Michiel van Genuchten, The

Mobile Software App Takeover, IEEE Software, July 2012.793

793DOI: 10.1109/MS.2012.104

http://doi.ieeecomputersociety.org/10.1109/MS.2012.104

2012 996

“Mobile devices have become a commodity: we use several

devices for various purposes. Although we carry only some of

our devices with us, we still want to access content originating

from any device. To overcome this issue, device users often

upload content into a hosting service available in the cloud.

However, cloud-based hosting can alienate the control and

ownership of the content.”

Niko Mäkitalo, Varvara Myllärniemi, Tommi

Mikkonen, Mikko Raatikainen, Tomi Männistö,

Juha Savolainen, Mobile Content as a Service A Blueprint for

a Vendor-Neutral Cloud of Mobile Devices, IEEE Software, July

2012.794

794DOI: 10.1109/MS.2012.54

http://doi.ieeecomputersociety.org/10.1109/MS.2012.54

2012 997

“Service-oriented architecture (SOA) has gained significant

attention as a means of developing flexible and modular

systems. .. not all stated benefits are realised due to, among

other things, a failure of service-oriented thinking at an

organisational level, problems allocating financial

responsibility for services within and between organisations,

and a lack of mature tool chains.”

Fethi A. Rabhi, Haresh Luthria, Service-Oriented

Architectures: Myth or Reality?, IEEE Software, July 2012.795

795DOI: 10.1109/MS.2011.156

http://doi.ieeecomputersociety.org/10.1109/MS.2011.156

2012 998

“Codification and testing of business rules in application

programs has historically been a challenge in software

engineering. Many organizations have adopted the business

rules approach to formalize and compartmentalize business

rules as a separate component from application code.”

Euntae T. Lee, Chen Zhang, Thomas O. Meservy, Jasbir

Dhaliwal, The Business Rules Approach and Its Effect on

Software Testing, IEEE Software, July 2012.796

796DOI: 10.1109/MS.2011.120

http://doi.ieeecomputersociety.org/10.1109/MS.2011.120

2012 999

2012 1000

“A close look at the evidence underpinning the original

concept of lean production and its popular interpretation

reveals the inherent challenges of measuring and interpreting

evidence for performance differences.”

Helen Sharp, Tore Dybå, What’s the Evidence for

Lean?, IEEE Software, September 2012.797

797DOI: 10.1109/MS.2012.126

http://doi.ieeecomputersociety.org/10.1109/MS.2012.126

2012 1001

“Although some claim that principles from other fields can’t

apply to a creative and design-oriented discipline such as

software development, many studies have proven the simple

wisdom that we all benefit from empowered and motivated

teams, we build our products faster and with better quality if

market strategy is understood and requirements changes

managed, we learn from previous defects, we can emphasize

repeatable processes, and we should build from high-quality

components. The software industry is now poised to transform

to customer-centric development, which translates into both

reducing the total life-cycle cost and increasing efficiency and

effectiveness by eliminating waste and adding value.”

Pekka Abrahamsson, Christof Ebert, Nilay Oza, Lean Software

Development, IEEE Software, September 2012.798

798DOI: 10.1109/MS.2012.116

http://doi.ieeecomputersociety.org/10.1109/MS.2012.116

2012 1002

“The term ‘lean’ … describes any efficient management

practice that minimized waste, including in product

development … In lean terms, ‘waste’ is anything that doesn’t

either add customer value directly or add knowledge about

how to deliver that value more effectively.”

Mary Poppendieck, Michael A. Cusumano, Lean Software

Development: A Tutorial, IEEE Software, September 2012.799

799DOI: 10.1109/MS.2012.107

http://doi.ieeecomputersociety.org/10.1109/MS.2012.107

2012 1003

“Lean practices use the principle of Little’s law to improve the

flow of value to the end user by eliminating sources of waste

from a software development process. Little’s law defines

throughput as a ratio of work in process and cycle time.

Increasing throughput (or productivity) requires continuously

improving (that is, decreasing) cycle time while ensuring that

the work-in-process limit doesn’t exceed the capacity

available to process the work.”

Robert L. Nord, Ipek Ozkaya, Raghvinder S. Sangwan, Making

Architecture Visible to Improve Flow Management in Lean

Software Development, IEEE Software, September 2012.800

800DOI: 10.1109/MS.2012.109

http://doi.ieeecomputersociety.org/10.1109/MS.2012.109

2012 1004

“Modern virtualization technology allows us to run operating

systems in a virtual machine that can be hosted on facilities

ranging from our laptop to a datacenter in the cloud. It’s thus

possible to create a virtualized development environment

that contains all the tools, applications, and libraries that a

programmer requires. This speeds up developer setup time,

brings economies of scale, introduces parity between

development and production environments, allows the use of

platform-specific tools, and simplifies embedded-system

development. Using VMs, testers can ensure a pristine

environment and access to diverse (virtual) platforms.

Deployment is also simplified by packaging all the system’s

components and setup into a VM appliance. Finally, on the

operations side, VMs make it easier for a system to support

application provisioning, maintenance windows, high

availability, and disaster recovery.”

2012 1005

Diomidis Spinellis, Virtualize Me, IEEE Software, September

2012.801

801DOI: 10.1109/MS.2012.125

http://doi.ieeecomputersociety.org/10.1109/MS.2012.125

2012 1006

2012 1007

“Computing was once a companion to conflict; computing is

now an instrument of war; computing is becoming a theater of

war. Along the way, conflict has shaped computing, and

computing has changed the nature of warfare.”

Grady Booch, Woven on the Loom of Sorrow, IEEE Software,

November 2012.802

802DOI: 10.1109/MS.2012.168

http://doi.ieeecomputersociety.org/10.1109/MS.2012.168

2012 1008

“The metaphor of technical debt in software development

was introduced two decades ago to explain to nontechnical

stakeholders the need for what we call now ‘refactoring.’”

Ipek Ozkaya, Robert L. Nord, Philippe Kruchten, Technical

Debt: From Metaphor to Theory and Practice, IEEE Software,

November 2012.803

803DOI: 10.1109/MS.2012.167

http://doi.ieeecomputersociety.org/10.1109/MS.2012.167

2012 1009

“Agile teams create business value by responding to

changing business environments and delivering working

software at regular intervals. While doing so, they make

design tradeoffs to satisfy business needs such as meeting a

release schedule. Technical debt is the result of such

decisions or tradeoffs. When this happens, agile teams must

pay off the accumulated debt by improving designs during

subsequent iterations in order to improve maintainability.”

Raja Bavani, Distributed Agile, Agile Testing, and Technical

Debt, IEEE Software, November 2012.804

804DOI: 10.1109/MS.2012.155

http://doi.ieeecomputersociety.org/10.1109/MS.2012.155

2012 1010

“Technical debt is more than a metaphor: applying finance

and accounting practices typical of other business

obligations to technical debt can, in addition to meeting

ethical and legal governance requirements, generate real,

sustained financial benefits.”

Patrick Conroy, Technical Debt: Where Are the Shareholders’

Interests?, IEEE Software, November 2012.805

805DOI: 10.1109/MS.2012.166

http://doi.ieeecomputersociety.org/10.1109/MS.2012.166

2013

2013 1012

2013 1013

“Computing is transforming every aspect of the human

experience. As creators of this technology, what obligations

do we have to the general public, for whom we make the

complex machinery of computing increasingly invisible? …

it’s important for the general public to know something about

the technology behind the curtain of computing.”

Grady Booch, The Great and Terrible Oz, IEEE Software,

January 2013.806

806DOI: 10.1109/MS.2013.16

http://doi.ieeecomputersociety.org/10.1109/MS.2013.16

2013 1014

“Most people think of requirements as things to manipulate

at the start of a project. Others, more enlightened, recognize

that requirements also have a role toward the end of projects

to test compliance. But few people have recognized an active

role for requirements during their system’s use - to monitor

whether the system continues to comply with its

requirements during its lifetime.”

Neil Maiden, Monitoring Our Requirements, IEEE Software,

January 2013.807

807DOI: 10.1109/MS.2013.10

http://doi.ieeecomputersociety.org/10.1109/MS.2013.10

2013 1015

”‘Innovation’ and ‘innovative architecture’ are topics of

broad popularity in software engineering. Yet, the two terms

appear to mean different things to different people - with

interpretations of both driven more by personal interests than

by their true meanings. It’s therefore essential for architects

to have a clear understanding of what ‘innovation’ means in

the context of their projects if they are to make the right

design decisions and communicate the intended messages

to project stakeholders.”

Frank Buschmann, Innovation Reconsidered, IEEE Software,

January 2013.808

808DOI: 10.1109/MS.2013.9

http://doi.ieeecomputersociety.org/10.1109/MS.2013.9

2013 1016

“Over the past decade, the advent of social networking has

fundamentally altered the landscape of how software is used,

designed, and developed. It has expanded how communities

of software stakeholders communicate, collaborate, learn

from, and coordinate with one another.”

Andrew Begel, Jan Bosch, Margaret-Anne Storey, Bridging

Software Communities through Social Networking, IEEE

Software, January 2013.809

809DOI: 10.1109/MS.2013.3

http://doi.ieeecomputersociety.org/10.1109/MS.2013.3

2013 1017

“Software development is increasingly carried out by

developer communities in a global setting. One way to

prepare for development success is to uncover and harmonize

these communities to exploit their collective, collaborative

potential.”

Hans van Vliet, Patricia Lago, Damian A. Tamburri, Uncovering

Latent Social Communities in Software Development, IEEE

Software, January 2013.810

810DOI: 10.1109/MS.2012.170

http://doi.ieeecomputersociety.org/10.1109/MS.2012.170

2013 1018

“A new generation of development environments takes a

radical approach to communication and coordination by

fusing social networking functionality with flexible,

distributed version control. Through these transparent work

environments, people, repositories, development activities,

and their histories are immediately and easily visible to all

users …. transparency helps developers on GitHub manage

their projects, handle dependencies more effectively, reduce

communication needs, and figure out what requires their

attention.”

James Herbsleb, Jason Tsay, Colleen Stuart, Laura Dabbish,

Leveraging Transparency, IEEE Software, January 2013.811

811DOI: 10.1109/MS.2012.172

http://doi.ieeecomputersociety.org/10.1109/MS.2012.172

2013 1019

“The Social Web provides comprehensive and publicly

available information about software developers, identifying

them as contributors to open source projects, experts at

maintaining ties on social network sites, or active

participants on knowledge-sharing sites. These signals, when

aggregated and summarized, could be used to define potential

candidates’ individual profiles: potential employers could

qualitatively evaluate job seekers, even those lacking a formal

degree or changing their career path, by assessing

candidates’ online contributions.”

Andrea Capiluppi, Alexander Serebrenik, Leif Singer, Assessing

Technical Candidates on the Social Web, IEEE Software,

January 2013.812

812DOI: 10.1109/MS.2012.169

http://doi.ieeecomputersociety.org/10.1109/MS.2012.169

2013 1020

“Many successful software companies use social networking

as a way to improve the services or products they provide. …

semistructured interviews with leaders from four successful

companies: Brian Doll, an engineer who manages GitHub’s

marketing; Doug Laundry, a principal group program manager

at Microsoft; David Fullerton, vice president of engineering at

Stack Exchange; and Robert Hughes, the president and chief

operating officer of TopCoder.”

Andrew Begel, Jan Bosch, Margaret-Anne Storey, Social

Networking Meets Software Development: Perspectives from

GitHub, MSDN, Stack Exchange, and TopCoder, IEEE

Software, January 2013.813

813DOI: 10.1109/MS.2013.13

http://doi.ieeecomputersociety.org/10.1109/MS.2013.13

2013 1021

“Mutation testing improves a system’s bug-detection

capability. It also helps improve coverage by exposing

software or code areas that other types of testing might not

expose.”

Izzat Mahmoud Alsmadi, Using Mutation to Enhance GUI

Testing Coverage, IEEE Software, January 2013.814

814DOI: 10.1109/MS.2012.22

http://doi.ieeecomputersociety.org/10.1109/MS.2012.22

2013 1022

“What works for whom, where, when, and why is the ultimate

question of evidence-based software engineering. Still, the

empirical research seems mostly concerned with identifying

universal relationships that are independent of how work

settings and other contexts interact with the processes

important to software practice. Questions of ‘What is best?’

seem to prevail. For example, ‘Which is better: pair or solo

programming? test-first or test-last?’ However, just as the

question of whether a helicopter is better than a bicycle is

meaningless, so are these questions because the answers

depend on the settings and goals of the projects studied.”

Tore Dyba, Contextualizing empirical evidence, IEEE Software,

January 2013.815

815DOI: 10.1109/MS.2013.4

http://doi.ieeecomputersociety.org/10.1109/MS.2013.4

2013 1023

“Testing is a destructive task in which the goal is to find

relevant defects as early as possible. It requires automation

to reduce cost and ensure high regression, thus delivering

determined quality. … In practice, XUnit frameworks are the

most used technology to automate tests. In such frameworks,

test cases are written in an executable language and can be

executed automatically. They also provide specific operations

to implement the test case oracles.”

Macario Polo, Pedro Reales, Mario Piattini, Christof Ebert, Test

Automation, IEEE Software, January 2013.816

816DOI: 10.1109/MS.2013.15

http://doi.ieeecomputersociety.org/10.1109/MS.2013.15

2013 1024

2013 1025

“The subject of the computability of the mind introduces

complex philosophical, ethical, and technical issues. That

aside, this topic draws us in to the nature of algorithms. We

are surrounded by algorithms; much of the history of

computing is also the history of the advance of algorithms.

For the public, algorithms are part of computing’s self-made

mystery, but to understand their nature is an important part

of computational thinking.”

Grady Booch, From Minecraft to Minds, IEEE Software, March

2013.817

817DOI: 10.1109/MS.2013.28

http://doi.ieeecomputersociety.org/10.1109/MS.2013.28

2013 1026

“Requirements work is really about problem solving. Its

primary function is to locate and scope problems, then create

and describe solutions for them.”

Neil Maiden, So, What Is Requirements Work?, IEEE Software,

March 2013.818

818DOI: 10.1109/MS.2013.35

http://doi.ieeecomputersociety.org/10.1109/MS.2013.35

2013 1027

“Quality concerns, often referred to as nonfunctional

requirements, service-level agreements, quality attributes,

performance constraints, or architecturally significant

requirements, describe system-level attributes such as

security, performance, reliability, and maintainability. In

conjunction with functional requirements, these quality

concerns drive and constrain a system’s architectural design

and often introduce significant trade-offs that must be

carefully considered and balanced. The dependencies that

exist between requirements and architecture have been

referred to as the twin peaks of requirements and

architecture.”

Jane Cleland-Huang, Robert S. Hanmer, Sam Supakkul, Mehdi

Mirakhorli, The Twin Peaks of Requirements and

Architecture, IEEE Software, March 2013.819

819DOI: 10.1109/MS.2013.39

http://doi.ieeecomputersociety.org/10.1109/MS.2013.39

2013 1028

“The most useful forms of documentation are views of the

software that can be automatically generated.”

Mehdi Mirakhorli, Jane Cleland-Huang, Traversing the Twin

Peaks, IEEE Software, March 2013.820

820DOI: 10.1109/MS.2013.40

http://doi.ieeecomputersociety.org/10.1109/MS.2013.40

2013 1029

“In the past decade, researchers have devised many methods

to support and codify architecture design. However, what

hampers such methods’ adoption is that these methods

employ abstract concepts such as views, tactics, and

patterns, whereas practicing software architects choose

technical design primitives from the services offered in

commercial frameworks. … systematically links both

top-down concepts, such as patterns and tactics, and

implementation artifacts, such as frameworks, which are

bottom-up concepts.”

Rick Kazman, Perla Velasco-Elizondo, Humberto Cervantes, A

Principled Way to Use Frameworks in Architecture Design,

IEEE Software, March 2013.821

821DOI: 10.1109/MS.2012.175

http://doi.ieeecomputersociety.org/10.1109/MS.2012.175

2013 1030

“Systems are naturally constructed in hierarchies, in which

design choices made at higher levels of abstraction levy

requirements on system components at the lower levels. Thus,

whether an aspect of a system is a design choice or a

requirement largely depends on your vantage point within

the system components’ hierarchy. “

Sanjai Rayadurgam, Mats P.E. Heimdahl, Anitha Murugesan,

Darren Cofer, Andrew Gacek, Michael W. Whalen, Your ”What”

Is My ”How”: Iteration and Hierarchy in System Design, IEEE

Software, March 2013.822

822DOI: 10.1109/MS.2012.173

http://doi.ieeecomputersociety.org/10.1109/MS.2012.173

2013 1031

“Software architects often must work with incomplete or

ill-specified non-functional requirements (NFRs) and use

them to make decisions. Through this process, existing NFRs

are refined or modified and new ones emerge. … The survey

revealed that architects usually elicit NFRs themselves in an

iterative process; they usually don’t document the NFRs and

only partially validate them.”

Claudia Ayala, David Ameller, Jordi Cabot, Xavier Franch,

Non-functional Requirements in Architectural Decision

Making, IEEE Software, March 2013.823

823DOI: 10.1109/MS.2012.176

http://doi.ieeecomputersociety.org/10.1109/MS.2012.176

2013 1032

“There’s clearly no single magic tool or technique that can be

used to secure the reliability of any large and complex

software application; rather, it takes good tools, workmanship,

and a carefully managed process. The three main control

points in this process are prevention, detection, and

containment.”

Gerard J. Holzmann, Landing a Spacecraft on Mars, IEEE

Software, March 2013.824

824DOI: 10.1109/MS.2013.32

http://doi.ieeecomputersociety.org/10.1109/MS.2013.32

2013 1033

“Software development teams no longer live - or want to live -

in a world of command and control. They want to be

self-organizing and have adaptive, supportive, and

collaborative leadership guiding them. This new age of

management requires managers to build a culture of trust,

encourage participation of their teams in decision making,

and sponsor innovation. Simply put, managers need to do

away with the traditional (micro) management and share

power with self-organizing teams.”

Rashina Hoda, Power to the People, IEEE Software, March

2013.825

825DOI: 10.1109/MS.2013.34

http://doi.ieeecomputersociety.org/10.1109/MS.2013.34

2013 1034

2013 1035

“On the one hand, we seek to build software-intensive

systems that are innovative, elegant, and supremely useful.

On the other hand, computing technology as a thing unto

itself is not the place of enduring value, and therefore, as

computing fills the spaces of our world, it becomes boring.

And that’s a very good and desirable thing.”

Grady Booch, In Defense of Boring, IEEE Software, May

2013.826

826DOI: 10.1109/MS.2013.54

http://doi.ieeecomputersociety.org/10.1109/MS.2013.54

2013 1036

“Agent orientation is moving from its origins in computer

science into applied automation systems engineering. The

main benefit of using software agents in industrial automation

is the combined application of agent-oriented software

engineering with growing fields such as semantic

technologies. Software agents also provide flexibility, which

is often the key requirement for creating software system

architectures that can evolve at runtime.”

Stephan Pech, Software Agents in Industrial Automation

Systems, IEEE Software, May 2013.827

827DOI: 10.1109/MS.2013.57

http://doi.ieeecomputersociety.org/10.1109/MS.2013.57

2013 1037

“We live in a world in which our safety depends on

software-intensive systems. This is the case for the

aeronautic, automotive, medical, nuclear, and railway

sectors as well as many more. Organizations everywhere are

struggling to find cost-effective methods to deal with the

enormous increase in size and complexity of these systems,

while simultaneously respecting the need to ensure their

safety. Consequently, we’re witnessing the ad hoc emergence

of a renewed discipline of safety-critical software systems

development as a broad range of software engineering

methods, tools, and frameworks are revisited from a

safety-related perspective.”

Annie Combelles, Xabier Larrucea, John Favaro, Safety-Critical

Software [Guest editors’ introduction], IEEE Software, May

2013.828

828DOI: 10.1109/MS.2013.55

http://doi.ieeecomputersociety.org/10.1109/MS.2013.55

2013 1038

“The transition from a code-based process to a model-based

process isn’t easy. This is particularly true for a company that

operates in a safety-critical sector, where the products must

be developed according to international standards, with

certified tools and controlled processes.”

Stefania Gnesi, Gianluca Magnani, Alessandro Fantechi,

Alessio Ferrari, Model-Based Development and Formal

Methods in the Railway Industry, IEEE Software, May 2013.829

829DOI: 10.1109/MS.2013.44

http://doi.ieeecomputersociety.org/10.1109/MS.2013.44

2013 1039

“Conventional software reliability assessment validates a

system’s reliability only at the end of development, resulting in

costly defect correction. A … statistical model checking

(SMC) … validate reliability at an early stage. SMC computes

the probability that a target system will satisfy

functional-safety requirements.”

Tai-Hyo Kim, Jongmoon Baik, Moonzoo Kim, Okjoo Choi,

Youngjoo Kim, Validating Software Reliability Early through

Statistical Model Checking, IEEE Software, May 2013.830

830DOI: 10.1109/MS.2013.24

http://doi.ieeecomputersociety.org/10.1109/MS.2013.24

2013 1040

“Testing software in air traffic control systems costs much

more than building them. This is basically true in every

domain producing software-intensive critical systems.

Software engineers strive to find methodological and

process-level solutions to balance these costs and to better

distribute verification efforts among all development phases.”

Stefano Russo, Francesco Fucci, Roberto Pietrantuono, Mauro

Faella, Gabriella Carrozza, Engineering Air Traffic Control

Systems with a Model-Driven Approach, IEEE Software, May

2013.831

831DOI: 10.1109/MS.2013.20

http://doi.ieeecomputersociety.org/10.1109/MS.2013.20

2013 1041

“Software for commercial aircraft is subject to the stringent

certification processes described in the DO-178B standard,

‘Software Considerations in Airborne Systems and Equipment

Certification.’ Issued in 1992, this document focuses strongly

on the verification process, with a major emphasis on testing.

In 2005, the avionics industry initiated an effort to update

DO-178B, in large part to accommodate development

practices (including formal verification techniques) that had

matured since its publication. A revised standard, DO-178C,

was issued in late 2011, incorporating new guidance that

allows formal verification to replace certain forms of testing.”

Benjamin Monate, Emmanuel Ledinot, Herve Delseny, Virginie

Wiels, Yannick Moy, Testing or Formal Verification: DO-178C

Alternatives and Industrial Experience, IEEE Software, May

2013.832

832DOI: 10.1109/MS.2013.43

http://doi.ieeecomputersociety.org/10.1109/MS.2013.43

2013 1042

“To support any claim that a product is safe for its intended

use, manufacturers must establish traceability within that

product’s development life cycle. “

Jane Cleland-Huang, Yi Zhang, Paul L. Jones, Patrick Mader,

Strategic Traceability for Safety-Critical Projects, IEEE

Software, May 2013.833

833DOI: 10.1109/MS.2013.60

http://doi.ieeecomputersociety.org/10.1109/MS.2013.60

2013 1043

“Aerospace or flight control systems software development

follows a rigorous process according to the RTCA DO-178B

standard, yet software errors still occur.”

Yogananda Jeppu, Flight Control Software: Mistakes Made

and Lessons Learned, IEEE Software, May 2013.834

834DOI: 10.1109/MS.2013.42

http://doi.ieeecomputersociety.org/10.1109/MS.2013.42

2013 1044

“Inspired by general ideas about how the automotive

industry brings innovation into lean manufacturing, the

author proposes introducing an activity called software

sketchifying into software product development. Sketchifying

aims to stimulate software stakeholders to spend more time

generating and considering alternative ideas before making a

decision to proceed with engineering.”

Zeljko Obrenović, Software Sketchifying: Bringing

Innovation into Software Development, IEEE Software, May

2013.835

835DOI: 10.1109/MS.2012.71

http://doi.ieeecomputersociety.org/10.1109/MS.2012.71

2013 1045

2013 1046

“The fast-changing nature of our field is one of the things

that make working in software so much fun— and so

challenging.”

Forrest Shull, The Only Constant Is Change, IEEE Software,

July 2013.836

836DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2013.115

https://doi.ieeecomputersociety.org/10.1109/MS.2013.115

2013 1047

“For those on the outside of the curtain of computing, there

is much mystery behind the matter of software-intensive

systems. To some, it looks like magic; to most, its inner

workings are irrelevant insofar that it simply works. To those

of us behind the curtain, however, we know that such systems

are filled with chaos, regularity, and beauty.”

Grady Booch, The Wonder Years, IEEE Software, July 2013.837

837DOI: 10.1109/MS.2013.89

http://doi.ieeecomputersociety.org/10.1109/MS.2013.89

2013 1048

“Deciding whether to write portable code or not should be

the outcome of a cost-benefit analysis. The key reason to

favor portable code is that it opens up the selection of

resources available to our project. Diverse technology choices

free us from vendor lock-in, allowing us to select the best

technology in each area based on quality and price, and

minimize technology risks. However, portable code can

degrade functionality, expressiveness, and efficiency.”

Diomidis Spinellis, Portability: Goodies vs. the Hair Shirt, IEEE

Software, July 2013.838

838DOI: 10.1109/MS.2013.82

http://doi.ieeecomputersociety.org/10.1109/MS.2013.82

2013 1049

“Many practitioners and researchers have turned to

analytics—that is, the use of analysis, data, and systematic

reasoning for making decisions. We can define software

analytics as follows: ‘Software analytics is analytics on

software data for managers and software engineers with the

aim of empowering software development individuals and

teams to gain and share insight from their data to make

better decisions.’”

Tim Menzies, Thomas Zimmermann, Software Analytics: So

What?, IEEE Software, July 2013.839

839DOI: 10.1109/MS.2013.86

http://doi.ieeecomputersociety.org/10.1109/MS.2013.86

2013 1050

“Performance is a critical component of customer

satisfaction with network-based applications. Unfortunately,

accurately evaluating the performance of collaborative

software that operates in extremely heterogeneous

environments is difficult with traditional techniques such as

modeling workloads or testing in controlled environments.”

Sandipan Ganguly, Brian Bussone, Christian Bird, Danyel

Fisher, Jacqueline Richards, Robert Musson, Leveraging the

Crowd: How 48,000 Users Helped Improve Lync

Performance, IEEE Software, July 2013.840

840DOI: 10.1109/MS.2013.67

http://doi.ieeecomputersociety.org/10.1109/MS.2013.67

2013 1051

“Prominent technology companies including IBM, Microsoft,

and Google have embraced an analytics-driven culture to

help improve their decision making. Analytics aim to help

practitioners answer questions critical to their projects, such

as ‘Are we on track to deliver the next release on schedule?’

and ‘Of the recent features added, which are the most prone

to defects?’ by providing fact-based views about projects.

Analytic results are often quantitative in nature, presenting

data as graphical dashboards with reports and charts.”

Olga Baysal, Michael W. Godfrey, Reid Holmes, Developer

Dashboards: The Need for Qualitative Analytics, IEEE

Software, July 2013.841

841DOI: 10.1109/MS.2013.66

http://doi.ieeecomputersociety.org/10.1109/MS.2013.66

2013 1052

“Defect density is the ratio between the number of defects

and software size. Properly assessing defect density in

evolutionary product development requires a strong tool and

rigid process support that enables defects to be traced to the

offending source code. In addition, it requires waiting for field

defects after the product is deployed.”

David Faller, Yang-Ming Zhu, Defect-Density Assessment in

Evolutionary Product Development: A Case Study in Medical

Imaging, IEEE Software, July 2013.842

842DOI: 10.1109/MS.2012.111

http://doi.ieeecomputersociety.org/10.1109/MS.2012.111

2013 1053

“Today’s software development challenges require learning

teams that can continuously apply new engineering and

management practices, new and complex technical skills,

cross-functional skills, and experiential lessons learned. The

pressure of delivering working software often forces software

teams to sacrifice learning-focused practices. Effective

learning under pressure involves conscious efforts to

implement original agile practices such as retrospectives and

adapted strategies such as learning spikes. Teams, their

management, and customers must all recognize the

importance of creating learning teams as the key to braving

the erratic climates and uncharted territories of future

software development.”

Jeffry Babb, Rashina Hoda, Jacob Norbjerg, Toward Learning

Teams, IEEE Software, July 2013.843

843DOI: 10.1109/MS.2013.90

http://doi.ieeecomputersociety.org/10.1109/MS.2013.90

2013 1054

2013 1055

“If estimating the time needed for implementing some

software is difficult, coming up with a figure for the time

required to debug it is nigh on impossible.”

Diomidis Spinellis, Differential Debugging, IEEE Software,

September 2013.844

844DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2013.103

https://doi.ieeecomputersociety.org/10.1109/MS.2013.103

2013 1056

“With smartphones being the primary handheld device for

more than a billion people, mobile Web apps are a necessity

in both technical and commercial fields. There are several

approaches to developing mobile Web apps, but given the fast

speed of mobile software evolution, in which the leading

companies become marginal in months and new gadgets

continually appear, it’s crucial to understand the basic

technologies. “

Nicolás Serrano, Josune Hernantes, Gorka Gallardo, Mobile

Web Apps, IEEE Software, September 2013.845

845DOI: 10.1109/MS.2013.111

http://doi.ieeecomputersociety.org/10.1109/MS.2013.111

2013 1057

“With software analytics, software practitioners explore and

analyze data to obtain insightful, actionable information for

tasks regarding software development, systems, and users.

The StackMine project produced a software analytics system

for Microsoft product teams.”

Dongmei Zhang, Shi Han, Yingnong Dang, Jian-Guang Lou,

Haidong Zhang, Tao Xie, Software Analytics in Practice, IEEE

Software, September 2013.846

846DOI: 10.1109/MS.2013.94

http://doi.ieeecomputersociety.org/10.1109/MS.2013.94

2013 1058

“When free, open source software development communities

work with companies that use their output, it’s especially

important for both parties to understand how this

collaboration is performing. The use of data analytics

techniques on software development repositories can improve

factual knowledge about performance metrics.”

Jesus M. Gonzalez-Barahona, Daniel Izquierdo-Cortazar,

Stefano Maffulli, Gregorio Robles, Understanding How

Companies Interact with Free Software Communities, IEEE

Software, September 2013.847

847DOI: 10.1109/MS.2013.95

http://doi.ieeecomputersociety.org/10.1109/MS.2013.95

2013 1059

“Amisoft, a Chilean software company with 43 employees,

successfully uses software analytics in its projects. These

support a variety of strategic and tactical decisions, resulting

in less overwork of employees. However, the analytics done at

Amisoft are very different from the ones used in larger

companies.”

Romain Robbes, René Vidal, María Cecilia Bastarrica, Are

Software Analytics Efforts Worthwhile for Small Companies?

The Case of Amisoft, IEEE Software, September 2013.848

848DOI: 10.1109/MS.2013.92

http://doi.ieeecomputersociety.org/10.1109/MS.2013.92

2013 1060

“Software analytics guide practitioners in decision making

throughout the software development process. In this context,

prediction models help managers efficiently organize their

resources and identify problems by analyzing patterns on

existing project data in an intelligent and meaningful manner.”

Ayse Tosun Misirli, Ayse Tosun Misirli, Ayse Bener, Burak

Turhan, A Retrospective Study of Software Analytics Projects:

In-Depth Interviews with Practitioners, IEEE Software,

September 2013.849

849DOI: 10.1109/MS.2013.93

http://doi.ieeecomputersociety.org/10.1109/MS.2013.93

2013 1061

“As the last standardization effort was done in 2004, the

software engineering curriculum is currently being revised.

Haven’t we reached the point where agile development

should be part of all software engineering curricula? And if

so, shouldn’t new curriculum standards ensure that it is?”

Armando Fox, David Patterson, Is the New Software

Engineering Curriculum Agile?, IEEE Software, September

2013.850

850DOI: 10.1109/MS.2013.109

http://doi.ieeecomputersociety.org/10.1109/MS.2013.109

2013 1062

2013 1063

“No matter your individual position on the matter, faith is a

powerful element of the human experience. Therefore, it

comes as no surprise that computing intersects with the

story of belief in many ways … computing as a medium for

faith, as a ritual space, and as a technology that itself raises

certain metaphysical issues.”

Grady Booch, Deus ex Machina, IEEE Software, November

2013.851

851DOI: 10.1109/MS.2013.122

http://doi.ieeecomputersociety.org/10.1109/MS.2013.122

2013 1064

“Embedded analytics and statistics for big data have

emerged as an important topic across industries. As the

volumes of data have increased, software engineers are called

to support data analysis and applying some kind of statistics

to them.”

Panos Louridas, Christof Ebert, Embedded Analytics and

Statistics for Big Data, IEEE Software, November 2013.852

852DOI: 10.1109/MS.2013.125

http://doi.ieeecomputersociety.org/10.1109/MS.2013.125

2013 1065

“Software architecture is the foundation of software system

development, encompassing a system’s architects’ and

stakeholders’ strategic decisions.”

Paris Avgeriou, Michael Stal, Rich Hilliard, Architecture

Sustainability [Guest editors’ introduction], IEEE Software,

November 2013.853

853DOI: 10.1109/MS.2013.120

http://doi.ieeecomputersociety.org/10.1109/MS.2013.120

2013 1066

“Software architects must sustain design decisions to endure

throughout software evolution. Several criteria can help them

assess decisions’ sustainability … Strategic… Measurable

and Manageable… Achievable and Realistic… Rooted in

Requirements… Timeless… “

Uwe Zdun, Rafael Capilla, Huy Tran, Olaf Zimmermann,

Sustainable Architectural Design Decisions, IEEE Software,

November 2013.854

854DOI: 10.1109/MS.2013.97

http://doi.ieeecomputersociety.org/10.1109/MS.2013.97

2013 1067

“It’s difficult to express a software architecture’s

sustainability in a single metric: relevant information is

spread across requirements, architecture design documents,

technology choices, source code, system context, and

software architects’ implicit knowledge. Many aspects

influence economic sustainability, including design decisions

facilitating evolutionary changes, adherence to good

modularization practices, and technology choices.”

Heiko Koziolek, Dominik Domis, Thomas Goldschmidt, Philipp

Vorst, Measuring Architecture Sustainability, IEEE Software,

November 2013.855

855DOI: 10.1109/MS.2013.101

http://doi.ieeecomputersociety.org/10.1109/MS.2013.101

2013 1068

“Software product lines (SPLs) are long-living systems that

enable systematic reuse in application engineering.

Product-specific changes over time can result in architecture

drift, which requires updating assumptions made in the SPL’s

reuse infrastructure.”

Juha Savolainen, Nan Niu, Tommi Mikkonen, Thomas Fogdal,

Long-Term Product Line Sustainability with Planned Staged

Investments, IEEE Software, November 2013.856

856DOI: 10.1109/MS.2013.96

http://doi.ieeecomputersociety.org/10.1109/MS.2013.96

2013 1069

“One of the most notable categories of successful UI

development is form-oriented frameworks tightly coupled

with relational database management systems. Essentially,

this approach builds a UI for relational database applications

by organizing that interface into forms, which present values

of database fields in the corresponding form controls, such as

text boxes, list boxes, check boxes, grids, and so on. Tools and

runtime engines support generic navigation through these

forms and direct coupling of controls with the back-end data.

The developer doesn’t need to take care of data locking,

transfer, transformation, and updates: when the user switches

to another record in the master part of a master-details form,

for example, the mechanism incorporated in the generic form

automatically refreshes the values in the details part.”

2013 1070

Zarko Mijailovic, Dragan Milicev, A Retrospective on User

Interface Development Technology, IEEE Software, November

2013.857

857DOI: 10.1109/MS.2013.45

http://doi.ieeecomputersociety.org/10.1109/MS.2013.45

2013 1071

“A conservative estimate puts today’s number of published

patterns at more than 7,500, and growing. “

Gregor Hohpe, Rebecca Wirfs-Brock, Joseph W. Yoder, Olaf

Zimmermann K1 architectural knowledge, Twenty Years of

Patterns’ Impact, IEEE Software, November 2013.858

858DOI: 10.1109/MS.2013.135

http://doi.ieeecomputersociety.org/10.1109/MS.2013.135

2014

2014 1073

2014 1074

“Every line of code represents a moral decision; every bit of

data collected, analyzed, and visualized has moral

implications.”

Grady Booch, The Human and Ethical Aspects of Big Data,

IEEE Software, January 2014.859

859DOI: 10.1109/MS.2014.16

http://doi.ieeecomputersociety.org/10.1109/MS.2014.16

2014 1075

“In practice, it’s neither possible nor meaningful to

characterize software products or projects by a single quality

metric. “

Ruth Breu, Annie Kuntzmann-Combelles, Michael Felderer, New

Perspectives on Software Quality [Guest editors’

introduction], IEEE Software, January 2014.860

860DOI: 10.1109/MS.2014.9

http://doi.ieeecomputersociety.org/10.1109/MS.2014.9

2014 1076

“Automated GUIs test application user interfaces and verify

their functionalities. However, due to the uncertainty of

runtime execution environments, the device under test (DUT)

might not reproduce GUI operations on time, resulting in test

failures.”

Ying-Dar Lin, Edward T.-H. Chu, Shang-Che Yu, Yuan-Cheng

Lai, Improving the Accuracy of Automated GUI Testing for

Embedded Systems, IEEE Software, January 2014.861

861DOI: 10.1109/MS.2013.100

http://doi.ieeecomputersociety.org/10.1109/MS.2013.100

2014 1077

“Healthcare social networking sites (HSNSs) provide users

with tools and services to easily establish contact with each

other around shared problems and utilize the wisdom of

crowds to attack disease. The increasing popularity of HSNSs

has led to concern over the privacy of health-related data

published through these websites. The open philosophy of

contemporary HSNSs can result in unauthorized use and

disclosure of sensitive personal health data.”

Jingquan Li, Data Protection in Healthcare Social Networks,

IEEE Software, January 2014.862

862DOI: 10.1109/MS.2013.99

http://doi.ieeecomputersociety.org/10.1109/MS.2013.99

2014 1078

“Agility without objective governance cannot scale, and

governance without agility cannot compete. Agile methods

are mainstream, and software enterprises are adopting these

practices in diverse delivery contexts and at enterprise scale.

IBM’s broad industry experience with agile transformations

and deep internal know-how point to two key principles to

deliver sustained improvements in software business

outcomes with higher confidence: measure and streamline

change costs, and steer with economic governance and

Bayesian analytics.”

Murray Cantor, Walker Royce, Economic Governance of

Software Delivery, IEEE Software, January 2014.863

863DOI: 10.1109/MS.2013.102

http://doi.ieeecomputersociety.org/10.1109/MS.2013.102

2014 1079

“ISO 26262, a functional-safety standard, uses Automotive

Safety Integrity Levels (ASILs) to assign safety requirements

to automotive-system elements. System designers initially

assign ASILs to system-level hazards and then allocate them

to elements of the refined system architecture. Through ASIL

decomposition, designers can divide a function’s safety

requirements among multiple components. However, in

practice, manual ASIL decomposition is difficult and produces

varying results.”

Luis da Silva Azevedo, David Parker, Martin Walker, Yiannis

Papadopoulos, Rui Esteves Araujo, Assisted Assignment of

Automotive Safety Requirements, IEEE Software, January

2014.864

864DOI: 10.1109/MS.2013.118

http://doi.ieeecomputersociety.org/10.1109/MS.2013.118

2014 1080

“The rhetorical question ‘do we practice what we preach?’

still seems to be relevant, even a decade after it appeared on

the requirements engineering research landscape.”

Smita Ghaisas, Practicing What We Preach, IEEE Software,

January 2014.865

865DOI: 10.1109/MS.2014.10

http://doi.ieeecomputersociety.org/10.1109/MS.2014.10

2014 1081

2014 1082

“The Healthcare.gov debacle of 2013 leads many to wonder

if a better understanding of the project’s requirements could

have lessened the impact of the failed launch.”

Jane Cleland-Huang, Don’t Fire the Architect! Where Were the

Requirements?, IEEE Software, March 2014.866

866DOI: 10.1109/MS.2014.34

http://doi.ieeecomputersociety.org/10.1109/MS.2014.34

2014 1083

“Many affordable cloud-based offerings that cover software

development needs, like version control, issue tracking,

remote application monitoring, localization, deployment,

payment processing, and continuous integration, do away

with the setup, maintenance, and user support costs and

complexity associated with running such systems in-house.

The most important risks of cloud-based tools concern

control of the data stored and the services an organization

uses.”

Diomidis Spinellis, Developing in the Cloud, IEEE Software,

March 2014.867

867DOI: 10.1109/MS.2014.33

http://doi.ieeecomputersociety.org/10.1109/MS.2014.33

2014 1084

“Within the last decade, laptop sales have surpassed those of

desktop computers in many world markets, and the

worldwide popularity of smartphones has surpassed them

both … But smartphones are not the likely end of the mobile

computing innovation vector. We believe mobile computing is

in its infancy, and the next generations of mobile technology

are going to be even more pervasive, smaller, and maybe even

a bit weirder and more integral to our lives, jobs, and future.”

James Edmondson, William Anderson, Jeff Gray, Joseph P.

Loyall, Klaus Schmid, Jules White, Next-Generation Mobile

Computing, IEEE Software, March 2014.868

868DOI: 10.1109/MS.2014.39

http://doi.ieeecomputersociety.org/10.1109/MS.2014.39

2014 1085

“Researchers from sociological disciplines could greatly

benefit from collective information from the many people who

use mobile devices to communicate via various social apps

and services. However, processing that information is difficult

because it’s scattered among numerous social platforms.

Furthermore, users are becoming increasingly concerned

about how and by whom their information is being accessed.”

Joaquin Guillen, Javier Miranda, Javier Berrocal, Jose

Garcia-Alonso, Juan Manuel Murillo, Carlos Canal, People as a

Service: A Mobile-centric Model for Providing Collective

Sociological Profiles, IEEE Software, March 2014.869

869DOI: 10.1109/MS.2013.140

http://doi.ieeecomputersociety.org/10.1109/MS.2013.140

2014 1086

“Mobile cloud computing infrastructures supporting the vision

of the Internet of Things (IoT) provide services beneficial to

our society. For example, a cloud of smartphones can run

software that shares the sensing and computing resources of

nearby devices, providing increased situational awareness in

a disaster zone. “

Tihamer Levendovszky, Abhishek Dubey, William R. Otte, Daniel

Balasubramanian, Alessandro Coglio, Sandor Nyako, William

Emfinger, Pranav Kumar, Aniruddha Gokhale, Gabor Karsai,

Distributed Real-Time Managed Systems: A Model-Driven

Distributed Secure Information Architecture Platform for

Managed Embedded Systems, IEEE Software, March 2014.870

870DOI: 10.1109/MS.2013.143

http://doi.ieeecomputersociety.org/10.1109/MS.2013.143

2014 1087

“Newer models for interacting with wireless sensors such as

Internet of Things and Sensor Cloud aim to overcome

restricted resources and efficiency. The Missouri S&T (science

and technology) sensor cloud enables different networks,

spread in a huge geographical area, to connect together and

be employed simultaneously by multiple users on demand.

Virtual sensors, which are at the core of this sensor cloud

architecture, assist in creating a multiuser environment on top

of resource-constrained physical wireless sensors and can

help in supporting multiple applications.”

Sanjay Madria, Vimal Kumar, Rashmi Dalvi, Sensor Cloud: A

Cloud of Virtual Sensors, IEEE Software, March 2014.871

871DOI: 10.1109/MS.2013.141

http://doi.ieeecomputersociety.org/10.1109/MS.2013.141

2014 1088

“Developers of embedded systems are driven to constantly

improve product quality, reduce cost, and rapidly deliver

reliable working code. The embedded software domain applies

constraints which can hinder agile methodologies commonly

used to achieve such benefits. Simulation-based software

development is one proven method that addresses these

constraints.”

Jason Ard, Kristine Davidsen, Terril Hurst, Simulation-Based

Embedded Agile Development, IEEE Software, March 2014.872

872DOI: 10.1109/MS.2014.42

http://doi.ieeecomputersociety.org/10.1109/MS.2014.42

2014 1089

2014 1090

“Many types of architects work in the software industry, but

when we consider the breadth of their work and their primary

expertise, we find that they can be organized into three major

groups: enterprise architects, application architects, and

infrastructure architects. Knowing which group an architect

falls into helps in understanding their expertise and what to

expect of them.”

Eoin Woods, Return of the Pragmatic ArchitectK1

infrastructure, IEEE Software, May 2014.873

873DOI: 10.1109/MS.2014.69

http://doi.ieeecomputersociety.org/10.1109/MS.2014.69

2014 1091

“Continuous integration has been around for a while now, but

the habits it suggests are far from common practice.

Automated builds, a thorough test suite, and committing to

the mainline branch every day sound simple at first, but they

require a responsible team to implement and constant care.

What starts with improved tooling can be a catalyst for

long-lasting change in your company’s shipping culture.

Continuous integration is more than a set of practices, it’s a

mindset that has one thing in mind: increasing customer

value.”

Mathias Meyer, Continuous Integration and Its ToolsK1

testing, IEEE Software, May 2014.874

874DOI: 10.1109/MS.2014.58

http://doi.ieeecomputersociety.org/10.1109/MS.2014.58

2014 1092

“Quality goals for security, business agility, maintainability

and other such attributes are often achieved through

implementing best practices. To know which stakeholder

goals are attainable and how they can best be achieved, we

must empirically evaluate software development beliefs and

practices.”

Mamoun Hirzalla, Peter Bahrs, Jane Cleland-Huang K1 quality

goals, Beyond Anecdotal Thinking: Deepening Our

Understanding for Achieving Quality Goals, IEEE Software,

May 2014.875

875DOI: 10.1109/MS.2014.57

http://doi.ieeecomputersociety.org/10.1109/MS.2014.57

2014 1093

“Most studies and regulatory controls focus on

hardware-related measurement, analysis, and control for

energy consumption. However, all forms of hardware include

significant software components. Although software systems

don’t consume energy directly, they affect hardware

utilization, leading to indirect energy consumption.

Therefore, it’s important to engineer software to optimize its

energy consumption. “

Ayse Basar Bener, Maurizio Morisio, Andriy Miranskyy K1

cloud, Green Software, IEEE Software, May 2014.876

876DOI: 10.1109/MS.2014.62

http://doi.ieeecomputersociety.org/10.1109/MS.2014.62

2014 1094

“Many software systems today control large-scale

sociotechnical systems. These systems aren’t just entangled

with the environment but also with our dwindling resources

and mostly unsustainable way of living, while the planet’s

population continues to grow. Dealing with sustainability

requirements and systematically supporting their elicitation,

analysis, and realization is a problem that has yet to be

solved.”

Birgit Penzenstadler, Ankita Raturi, Debra Richardson, Bill

Tomlinson, Safety, Security, Now Sustainability: The

Nonfunctional Requirement for the 21st Century, IEEE

Software, May 2014.877

877DOI: 10.1109/MS.2014.22

http://doi.ieeecomputersociety.org/10.1109/MS.2014.22

2014 1095

“Energy efficiency and other sustainability issues are

common concerns in the material production industries but

rarely addressed in software development efforts. Instead,

traditional software development life cycles and

methodologies place an emphasis on maintainability and

other intrinsic software quality features. One standard

practice is to improve maintainability by detecting bad

smells in a system’s architecture and then applying

refactoring transformations to deal with those smells. The

refactoring research area is sufficiently mature for most

techniques to achieve more maintainable system

architectures, but … they can also lead to both decreased

sustainability and increased power consumption.”

2014 1096

Ricardo Perez-Castillo, Mario Piattini, Analyzing the Harmful

Effect of God Class Refactoring on Power Consumption, IEEE

Software, May 2014.878

878DOI: 10.1109/MS.2014.23

http://doi.ieeecomputersociety.org/10.1109/MS.2014.23

2014 1097

“To develop more powerful, service-specific strategies for

reducing IT’s carbon footprint, we need more complete and

widely understandable specifications that describe exactly a

service’s functionality, the level of quality it achieves, and its

environmental consequences. Such green specifications will

allow more stakeholders involved in the delivery and

consumption of IT services to understand their detailed

functionality and the tradeoffs between quality of service and

environmental impact entailed in their use.”

Colin Atkinson, Thomas Schulze, Sonja Klingert, Facilitating

Greener IT through Green Specifications, IEEE Software, May

2014.879

879DOI: 10.1109/MS.2014.19

http://doi.ieeecomputersociety.org/10.1109/MS.2014.19

2014 1098

“In applications in which embedded devices cooperate with

ICT (information and communication technology) systems to

make industrial processes more efficient, reduce waste or raw

materials, and save the environment, the concept of green

software becomes increasingly complex. To deal with this

issue, the green-software community has introduced the

concepts of greening ICT or greening through ICT.”

Krzysztof Sierszecki, Tommi Mikkonen, Michaela Steffens,

Thomas Fogdal, Juha Savolainen K1 software engineering,

Green Software: Greening What and How Much?, IEEE

Software, May 2014.880

880DOI: 10.1109/MS.2014.63

http://doi.ieeecomputersociety.org/10.1109/MS.2014.63

2014 1099

“Hardware and software engineers are instrumental in

developing energy-efficient mobile systems. Unfortunately,

the last mile of energy efficiency relies on end users’ choices

and requirements. Imagine a user who has no power outlet

access and must remain productive on the laptop’s battery.

How does this person maximize battery life, yet remain

productive? What does the user have to give up to keep

working?”

Chenlei Zhang, Abram Hindle, Daniel M. German, The Impact

of User Choice on Energy Consumption, IEEE Software, May

2014.881

881DOI: 10.1109/MS.2014.27

http://doi.ieeecomputersociety.org/10.1109/MS.2014.27

2014 1100

2014 1101

“Studies show that software developers’ happiness pays off

when it comes to productivity.”

Daniel Graziotin, Xiaofeng Wang, Pekka Abrahamsson,

Software Developers, Moods, Emotions, and Performance,

IEEE Software, July 2014.882

882DOI: 10.1109/MS.2014.94

http://doi.ieeecomputersociety.org/10.1109/MS.2014.94

2014 1102

“The capacity to reflect on past practice is important for

continuous learning in software development. Reflection

often takes place in cycles of experience followed by

conscious application of learning from that experience,

during which a software developer might explore

comparisons, ponder alternatives, take diverse perspectives,

and draw inferences, especially in new and/or complex

situations. Such reflective practice has been shown in

different disciplines to be an effective developmental

practice for organizations, for teams, and for individuals.”

Tore Dyba, Neil Maiden, Robert Glass K1 practitioners, The

Reflective Software Engineer: Reflective Practice, IEEE

Software, July 2014.883

883DOI: 10.1109/MS.2014.97

http://doi.ieeecomputersociety.org/10.1109/MS.2014.97

2014 1103

“The capacity to reflect on past practice is important for

continuous learning in software development. Reflection often

takes place in cycles of experience followed by conscious

application of learning from that experience, during which a

software developer might explore comparisons, ponder

alternatives, take diverse perspectives, and draw inferences,

especially in new and/or complex situations.”

Tore Dyba, Neil Maiden, Robert Glass, The Reflective Software

Engineer: Reflective Practice, IEEE Software, July 2014.884

884DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2014.97

https://doi.ieeecomputersociety.org/10.1109/MS.2014.97

2014 1104

“Project retrospectives can be powerful tools for project

teams to collectively identify communication gaps and

practices to improve for future projects. However, even if

project members take the time for a retrospective, it can be

hard to correctly remember and jointly discuss past events in

a constructive way. Fact-based timelines that visualize a

project’s events offer a possible solution.”

Elizabeth Bjarnason, Anne Hess, Richard Berntsson Svensson,

Bjorn Regnell, Joerg Doerr, Reflecting on Evidence-Based

Timelines, IEEE Software, July 2014.885

885DOI: 10.1109/MS.2014.26

http://doi.ieeecomputersociety.org/10.1109/MS.2014.26

2014 1105

“Learning is a lifelong process, especially in the fast-paced

software industry. In addition to formal training courses,

good software developers continually learn by reflecting on

what they’ve done in the past. However, reflective practice is

rarely taught explicitly in university software engineering

education. One way to teach reflective techniques from the

start is through studio-based learning.”

Christopher N. Bull, Jon Whittle, Supporting Reflective

Practice in Software Engineering Education through a

Studio-Based Approach, IEEE Software, July 2014.886

886DOI: 10.1109/MS.2014.52

http://doi.ieeecomputersociety.org/10.1109/MS.2014.52

2014 1106

“The theoretical underpinnings of agile principles emphasize

regular reflection as a means to attain a sustainable

development pace and continuous learning. In practice, high

iteration pressure can diminish opportunities for ongoing

learning and reflection threatening to deprive software teams

of learning and reflection and possibly stagnating process

evolution.”

Jeffry Babb, Rashina Hoda, Jacob Norbjerg, Embedding

Reflection and Learning into Agile Software Development,

IEEE Software, July 2014.887

887DOI: 10.1109/MS.2014.54

http://doi.ieeecomputersociety.org/10.1109/MS.2014.54

2014 1107

“A coderetreat is an event where software developers gather

to spend a day exploring their craft in an informal yet

intellectually challenging environment. It encourages

reflective practice by addressing a single programming

problem from different perspectives, with multiple coding

partners, freed from the daily pressures of deadlines and the

need to deliver completed artifacts.”

David Parsons, Anuradha Mathrani, Teo Susnjak, Arno Leist,

Coderetreats: Reflective Practice and the Game of Life, IEEE

Software, July 2014.888

888DOI: 10.1109/MS.2014.25

http://doi.ieeecomputersociety.org/10.1109/MS.2014.25

2014 1108

“Microblogging is a popular form of social media that has

quickly permeated both enterprise and open source

communities. However, exactly how open source communities

can leverage microblogging isn’t yet well understood. … how

Drupal’s open source community uses Twitter… community

members often express positive emotions when tweeting

about work, which reinforces a sense of community.”

Xiaofeng Wang, Ilona Kuzmickaja, Klaas-Jan Stol, Pekka

Abrahamsson, Brian Fitzgerald, Microblogging in Open Source

Software Development: The Case of Drupal and Twitter, IEEE

Software, July 2014.889

889DOI: 10.1109/MS.2013.98

http://doi.ieeecomputersociety.org/10.1109/MS.2013.98

2014 1109

2014 1110

“Privacy is a critical design principle that must be balanced

with how we utilize personal data in software. … the

increasing importance of privacy in emerging software

ecosystems, legal and standards compliance, and software

design practice.”

Travis Breaux, Privacy Requirements in an Age of Increased

Sharing, IEEE Software, September 2014.890

890DOI: 10.1109/MS.2014.118

http://doi.ieeecomputersociety.org/10.1109/MS.2014.118

2014 1111

“An impressive number of new startups are launched every

day as a result of growing new markets, accessible

technologies, and venture capital. New ventures such as

Facebook, Supercell, Linkedin, Spotify, WhatsApp, and

Dropbox, to name a few, are good examples of startups that

evolved into successful businesses. However, despite many

successful stories, the great majority of them fail

prematurely. Operating in a chaotic and rapidly evolving

domain conveys new uncharted challenges for startuppers.”

Carmine Giardino, Michael Unterkalmsteiner, Nicolo

Paternoster, Tony Gorschek, Pekka Abrahamsson, What Do We

Know about Software Development in Startups?, IEEE

Software, September 2014.891

891DOI: 10.1109/MS.2014.129

http://doi.ieeecomputersociety.org/10.1109/MS.2014.129

2014 1112

“One thing we know for certain is that the dominant

programming language of today is the legacy language of

tomorrow. Sometimes languages are sidelined due to fashion,

but changes are generally due to new languages being

applicable to a wider or different class of problems than their

predecessors. Maybe one day this process will stop, but it

seems unlikely that you’d lose money betting on it to continue

for a while yet.”

Laurence Tratt, Adam Welc K1 software engineering,

Programming Languages, IEEE Software, September 2014.892

892DOI: 10.1109/MS.2014.119

http://doi.ieeecomputersociety.org/10.1109/MS.2014.119

2014 1113

“IDEs are essential for programming language developers,

and state-of-the-art IDE support is mandatory for

programming languages to be successful. Although IDE

features for mainstream programming languages are typically

implemented manually, this often isn’t feasible for

programming languages that must be developed with

significantly fewer resources. The Spoofax language

workbench is a platform for developing textual programming

languages with state-of-the-art IDE support.”

Guido H. Wachsmuth, Gabriël D.P. Konat, Eelco Visser,

Language Design with the Spoofax Language Workbench,

IEEE Software, September 2014.893

893DOI: 10.1109/MS.2014.100

http://doi.ieeecomputersociety.org/10.1109/MS.2014.100

2014 1114

“Scripting languages are very popular and are being used to

implement a wide range of applications. Meanwhile, multi-core

processors are everywhere, from dektop computers to mobile

devices, and concurrency has become the only means to

improve performance. However, concurrent programming

remains difficult and despite some interest in researching new

concurrency models for compiled languages, the conventional

concurrency support in scripting languages is still lacking.”

Alexandre Skyrme, Noemi Rodriguez, Roberto Ierusalimschy,

Scripting Multiple CPUs with Safe Data Sharing, IEEE

Software, September 2014.894

894DOI: 10.1109/MS.2014.102

http://doi.ieeecomputersociety.org/10.1109/MS.2014.102

2014 1115

“Modern software differs significantly from traditional

computer applications that mostly process reasonably small

amounts of static input data-sets in batch mode. Modern

software increasingly processes massive amounts of data,

whereby it is also often the case that new input data is

produced and/or existing data is modified on the fly.

Consequently, programming models that facilitate the

development of such software are emerging. What

characterizes them is that data, respectively changes thereof,

implicitly flow through computation modules.”

Guido Salvaneschi, Patrick Eugster, Mira Mezini, Programming

with Implicit Flows, IEEE Software, September 2014.895

895DOI: 10.1109/MS.2014.101

http://doi.ieeecomputersociety.org/10.1109/MS.2014.101

2014 1116

“In large-scale software development, there is typically a

conflict between being responsive to individual customers,

while at the same time achieving scale in terms of delivering a

high number of features to a large customer base. Most often,

organizations focus on scale and individual customer

requests are viewed as problematic since they add complexity

to product variation and version control.”

Helena Olsson, Anna Sandberg, Jan Bosch, Hiva Alahyari,

Scale and Responsiveness in Large-Scale Software

Development, IEEE Software, September 2014.896

896DOI: 10.1109/MS.2013.139

http://doi.ieeecomputersociety.org/10.1109/MS.2013.139

2014 1117

“There’s a joke that Go was conceived while waiting for a C++

program to compile, which is kind of half true. “

Jeff Meyerson, The Go Programming LanguageK1 syntax,

IEEE Software, September 2014.897

897DOI: 10.1109/MS.2014.127

http://doi.ieeecomputersociety.org/10.1109/MS.2014.127

2014 1118

2014 1119

“Over the past decades, today, and in the future, business

contexts in software organizations and the common ways of

developing software are changing dramatically. Formation of

teams in distributed environments, virtual or not, calls for

new ways of working across geographic, temporal, and

cultural boundaries. This, however, also requires effective

leadership approaches enabled through systems, processes,

technology, and people.”

Darja Smite, Marco Kuhrmann, Patrick Keil, Virtual Teams

[Guest editors’ introduction], IEEE Software, November

2014.898

898DOI: 10.1109/MS.2014.149

http://doi.ieeecomputersociety.org/10.1109/MS.2014.149

2014 1120

“Software engineering is a field in which distributed

development through virtual teams is a fact of life. … a set of

eight core requirements for support environments for virtual

software teams … (1) Enable Unobtrusive Awareness

Information Exchange … (2) Make Basic Work-Related Data

Available… (3) Provide Multisource Data Combinations …

(4) Filter Irrelevant Information … (5) Represent and

Recognize Current Contexts of Team Members … (6) Support

the Overhearing of Conversations … (7) Support Mood

Sharing… (8) … “

Kevin Dullemond, Ben van Gameren, Rini van Solingen,

Collaboration Spaces for Virtual Software Teams, IEEE

Software, November 2014.899

899DOI: 10.1109/MS.2014.105

http://doi.ieeecomputersociety.org/10.1109/MS.2014.105

2014 1121

“In today’s world, many companies turn to open source

projects as a method to increase productivity and innovation.

A major challenge with managing this kind of development is

the onboarding of new developers into the virtual teams that

drive such projects. There’s little guidance on how to initiate

new members into such teams and how to overcome the

learning curve. This case study on open source software

projects shows that mentoring can have a significant impact

on onboarding new members into virtual software

development teams.”

Fabian Fagerholm, Alejandro Sanchez Guinea, Jay Borenstein,

Jurgen Munch, Onboarding in Open Source Projects, IEEE

Software, November 2014.900

900DOI: 10.1109/MS.2014.107

http://doi.ieeecomputersociety.org/10.1109/MS.2014.107

2014 1122

“Do I think that there are some universals? Absolutely I do.

And looking for a team or cultural fit, looking for people who

are motivated and have good communication and good

collaboration, my suspicion is that those are universal

qualities that make people successful.”

Tobias Kaatz, Hiring in the Software Industry, IEEE Software,

November 2014.901

901DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2014.140

https://doi.ieeecomputersociety.org/10.1109/MS.2014.140

2015

2015 1124

2015 1125

“Parallels exist between the Industrial Revolution and our

current computing revolution regarding risk, transparency,

and responsibility.”

Grady Booch, Of Boilers, Bit, and Bots, IEEE Software, January

2015.902

902DOI: 10.1109/MS.2015.13

http://doi.ieeecomputersociety.org/10.1109/MS.2015.13

2015 1126

“Software-driven industries are advancing in five dimensions:

collaboration, comprehension, connectivity, cloud, and

convergence. However, companies often can get stuck in an

overly narrow technology focus. To avoid this, they should

connect architecture and functionality, master the entire

software development life cycle, strengthen globally

distributed teams, and streamline development.”

Christof Ebert, Gerd Hoefner, Mani V.S., What Next? Advances

in Software-Driven Industries, IEEE Software, January

2015.903

903DOI: 10.1109/MS.2015.21

http://doi.ieeecomputersociety.org/10.1109/MS.2015.21

2015 1127

“Software engineering for Internet computing involves the

architecting, development, deployment, management, and

quality assurance of software supporting Internet-based

systems. It also addresses global-development issues such

as communication complexity, distributed control,

governance policies, and cultural differences.”

Antonia Bertolino, M. Brian Blake, Pankaj Mehra, Hong Mei, Tao

Xie, Software Engineering for Internet Computing:

Internetware and Beyond [Guest editors’ introduction], IEEE

Software, January 2015.904

904DOI: 10.1109/MS.2015.16

http://doi.ieeecomputersociety.org/10.1109/MS.2015.16

2015 1128

“The Internet of Things (IoT) has the strong potential to

support a human society interacting more symbiotically with

its physical environment. Indeed, the emergence of tiny

devices that sense environmental cues and trigger actuators

after consulting logic and human preferences promises a

more environmentally aware and less wasteful society.”

Patrick Eugster, Vinaitheerthan Sundaram, Xiangyu Zhang,

Debugging the Internet of Things: The Case of Wireless

Sensor Networks, IEEE Software, January 2015.905

905DOI: 10.1109/MS.2014.132

http://doi.ieeecomputersociety.org/10.1109/MS.2014.132

2015 1129

“System operations (such as deployment, upgrade, and

reconfiguration) for cloud applications are failure prone.

These failures occur because these operations are performed

through cloud APIs provided by cloud providers and because

cloud APIs, in turn, are failure prone.”

Qinghua Lu, Xiwei Xu, Len Bass, Liming Zhu, Weishan Zhang, A

Tail-Tolerant Cloud API Wrapper, IEEE Software, January

2015.906

906DOI: 10.1109/MS.2015.2

http://doi.ieeecomputersociety.org/10.1109/MS.2015.2

2015 1130

“Microservices is the coming together of a bunch of better

practices from a number of different communities. It is a

combination of great stuff from the domain-driven-design

community around strategic design, bounded context,

subdomains, how to separate out your domains, and how to

partition a very big problem domain into smaller domains so

that you can manage them. “

Johannes Thones, Microservices, IEEE Software, January

2015.907

907DOI: 10.1109/MS.2015.11

http://doi.ieeecomputersociety.org/10.1109/MS.2015.11

2015 1131

2015 1132

“Technical debt refers to maintenance obligations that

software teams accumulate as a result of their actions.

Empirical research has led researchers to suggest three

dimensions along which software development teams should

map their technical-debt metrics: customer satisfaction

needs, reliability needs, and the probability of technology

disruption.”

Narayan Ramasubbu, Chris F. Kemerer, C. Jason Woodard,

Managing Technical Debt: Insights from Recent Empirical

Evidence, IEEE Software, March 2015.908

908DOI: 10.1109/MS.2015.45

http://doi.ieeecomputersociety.org/10.1109/MS.2015.45

2015 1133

“A refactoring aims to improve a certain quality while

preserving others. For example, code refactoring

restructures code to make it more maintainable without

changing its observable behavior.”

Olaf Zimmermann, Architectural Refactoring: A Task-Centric

View on Software Evolution, IEEE Software, March 2015.909

909DOI: 10.1109/MS.2015.37

http://doi.ieeecomputersociety.org/10.1109/MS.2015.37

2015 1134

“The concept of cloud computing has existed for 50 years,

since the beginning of the Internet. John McCarthy devised

the idea of time-sharing in computers as a utility in 1957.

Since then, the concept’s name has undergone several

changes: from service bureau, to application service

provider, to the Internet as a service, to cloud computing,

and to software-defined datacenters, with each name having

different nuances. “

Nicolas Serrano, Gorka Gallardo, Josune Hernantes,

Infrastructure as a Service and Cloud Technologies, IEEE

Software, March 2015.910

910DOI: 10.1109/MS.2015.43

http://doi.ieeecomputersociety.org/10.1109/MS.2015.43

2015 1135

“Mobile deployments are more challenging than Web

deployments because we don’t own the ecosystem, so we

can’t do all the things that we would normally do. And the

canaries are huge. We watch cold start, warm start, the app

size, and the numbers of photos uploaded, comments, and

ads being displayed or clicked. Growth and engagement

numbers and the crash rate are important to the company. If

the crash rate fluctuates, we immediately take action to

understand why.”

Bram Adams, Stephany Bellomo, Christian Bird, Tamara

Marshall-Keim, Foutse Khomh, Kim Moir, The Practice and

Future of Release Engineering: A Roundtable with Three

Release Engineers, IEEE Software, March 2015.911

911DOI: 10.1109/MS.2015.52

http://doi.ieeecomputersociety.org/10.1109/MS.2015.52

2015 1136

“Continuous delivery (CD) has emerged as an auspicious

alternative to traditional release engineering, promising to

provide the capability to release valuable software

continuously to customers.”

Lianping Chen, Continuous Delivery: Huge Benefits, but

Challenges Too, IEEE Software, March 2015.912

912DOI: 10.1109/MS.2015.27

http://doi.ieeecomputersociety.org/10.1109/MS.2015.27

2015 1137

“Continuous delivery and deployment are dramatically

shortening release cycles from months to hours. Cloud

applications with high-frequency releases often rely heavily

on automated tools and cloud infrastructure APIs to deploy

new software versions.”

Liming Zhu, Donna Xu, An Binh Tran, Xiwei Xu, Len Bass, Ingo

Weber, Srini Dwarakanathan, Achieving Reliable

High-Frequency Releases in Cloud Environments, IEEE

Software, March 2015.913

913DOI: 10.1109/MS.2015.23

http://doi.ieeecomputersociety.org/10.1109/MS.2015.23

2015 1138

2015 1139

“Recently proposed model repositories aim to support

specific needs–for example, collaborative modeling, the

ability to use different modeling tools in software life-cycle

management, tool interoperability, increased model reuse,

and the integration of heterogeneous models.”

Juri Di Rocco, Davide Di Ruscio, Ludovico Iovino, Alfonso

Pierantonio, Collaborative Repositories in Model-Driven

Engineering [Software Technology], IEEE Software, May

2015.914

914DOI: 10.1109/MS.2015.61

http://doi.ieeecomputersociety.org/10.1109/MS.2015.61

2015 1140

“An architecture haiku aims to capture software system

architecture’s most important details on a single piece of

paper. An architecture haiku helps development teams focus

on the most essential information relevant to the architecture,

provides clear guidance for construction, and encourages

collaboration.”

Michael Keeling, Architecture Haiku: A Case Study in Lean

Documentation [The Pragmatic Architect], IEEE Software,

May 2015.915

915DOI: 10.1109/MS.2015.59

http://doi.ieeecomputersociety.org/10.1109/MS.2015.59

2015 1141

“In variant-rich workflow-based systems, a major concern

for process variability is the context-aware configuration of

the variants. This means that context information, not users,

drives process configuration. “

Aitor Murguzur, Salvador Trujillo, Hong-Linh Truong, Schahram

Dustdar, Oscar Ortiz, Goiuria Sagardui, Run-Time Variability

for Context-Aware Smart Workflows, IEEE Software, May

2015.916

916DOI: 10.1109/MS.2015.70

http://doi.ieeecomputersociety.org/10.1109/MS.2015.70

2015 1142

“Smart manufacturing networks describe a production chain

as a marketplace that delivers products on demand. In this

chain, partners collaborate in product work routings that

connect dispersed service-enabled systems with resources,

materials, human expertise, and operation-equipment

combinations.”

Michael P. Papazoglou, Willem-Jan van den Heuvel, Julien

Etienne Mascolo, A Reference Architecture and

Knowledge-Based Structures for Smart Manufacturing

Networks, IEEE Software, May 2015.917

917DOI: 10.1109/MS.2015.57

http://doi.ieeecomputersociety.org/10.1109/MS.2015.57

2015 1143

“Defect taxonomies collect and organize experts’ domain

knowledge and project experience and are valuable for

requirements-based testing. They provide systematic backup

for the test design, support decisions for allocating testing

resources, improve the review of requirements, and are

suitable for measuring product quality.”

Michael Felderer, Armin Beer, Using Defect Taxonomies for

Testing Requirements, IEEE Software, May 2015.918

918DOI: 10.1109/MS.2014.56

http://doi.ieeecomputersociety.org/10.1109/MS.2014.56

2015 1144

“Docker is a container virtualization technology. So, it’s like a

very lightweight virtual machine VM. In addition to building

containers, we provide what we call a developer workflow,

which is really about helping people build containers and

applications inside containers and then share those among

their teammates.”

Charles Anderson, Docker [Software engineering], IEEE

Software, May 2015.919

919DOI: 10.1109/MS.2015.62

http://doi.ieeecomputersociety.org/10.1109/MS.2015.62

2015 1145

2015 1146

“The SPOT (Single Point of Truth) principle says that

developers should specify key pieces of information in one

and only one place in their code. Unfortunately, they

frequently violate this principle.”

Gerard J. Holzmann, Points of Truth, IEEE Software, July

2015.920

920DOI: 10.1109/MS.2015.103

http://doi.ieeecomputersociety.org/10.1109/MS.2015.103

2015 1147

“Software enables every aspect of the Web. Everything from

device communication to online social networks is achievable

only because of multiple lines of code. For various reasons,

designing and building security and privacy into Web

software is often an afterthought for most developers. This

results in easily compromised systems that pose significant

privacy and security risks to users.”

Tyrone Grandison, Larry Koved, Security and Privacy on the

Web [Guest editors’ introduction], IEEE Software, July

2015.921

921DOI: 10.1109/MS.2015.86

http://doi.ieeecomputersociety.org/10.1109/MS.2015.86

2015 1148

“Large organizations often face difficult tradeoffs in balancing

the need to share information with the need to safeguard

sensitive data. A prominent way to deal with this tradeoff is

on-the-fly screen masking of sensitive data in applications.”

Abigail Goldsteen, Ksenya Kveler, Tamar Domany, Igor

Gokhman, Boris Rozenberg, Ariel Farkash, Application-Screen

Masking: A Hybrid Approach, IEEE Software, July 2015.922

922DOI: 10.1109/MS.2015.75

http://doi.ieeecomputersociety.org/10.1109/MS.2015.75

2015 1149

“Adversaries employ sophisticated fingerprinting techniques

to identify Web users and record their browsing history and

Web interactions. Fingerprinting leaves no footprint on the

browser and is invisible to general Web users, who often lack

basic knowledge of it.”

Amin Faiz Khademi, Mohammad Zulkernine, Komminist

Weldemariam, An Empirical Evaluation of Web-Based

Fingerprinting, IEEE Software, July 2015.923

923DOI: 10.1109/MS.2015.77

http://doi.ieeecomputersociety.org/10.1109/MS.2015.77

2015 1150

“Inner source, the adoption and tailoring of open source

development practices in organizations, is receiving increased

interest.”

Klaas-Jan Stol, Brian Fitzgerald, Inner Source–Adopting Open

Source Development Practices in Organizations: A Tutorial,

IEEE Software, July 2015.924

924DOI: 10.1109/MS.2014.77

http://doi.ieeecomputersociety.org/10.1109/MS.2014.77

2015 1151

“Formal documentation can be a crucial resource for learning

to how to use an API. However, producing high-quality

documentation can be nontrivial. … The three severest

problems were ambiguity, incompleteness, and

incorrectness of content.”

Gias Uddin, Martin P. Robillard, How API Documentation Fails,

IEEE Software, July 2015.925

925DOI: 10.1109/MS.2014.80

http://doi.ieeecomputersociety.org/10.1109/MS.2014.80

2015 1152

“Software engineers today must be lifelong learners or risk

finding themselves out of a job, with totally obsolete skills to

sell.”

Philippe Kruchten, Lifelong Learning for Lifelong Employment,

IEEE Software, July 2015.926

926DOI: 10.1109/MS.2015.97

http://doi.ieeecomputersociety.org/10.1109/MS.2015.97

2015 1153

“Monitoring is critical to IT system health and thus to

businesses’ bottom line.”

Josune Hernantes, Gorka Gallardo, Nicolas Serrano, IT

Infrastructure-Monitoring Tools, IEEE Software, July 2015.927

927DOI: 10.1109/MS.2015.96

http://doi.ieeecomputersociety.org/10.1109/MS.2015.96

2015 1154

2015 1155

“Agile teams strive to balance short-term feature

development with longer-term quality concerns. These

evolutionary approaches often hit a ‘complexity wall’’ from

the cumulative effects of unplanned changes, resulting in

unreliable, poorly performing software.”

Stephany Bellomo, Ian Gorton, Rick Kazman, Toward Agile

Architecture: Insights from 15 Years of ATAM Data, IEEE

Software, September 2015.928

928DOI: 10.1109/MS.2015.35

http://doi.ieeecomputersociety.org/10.1109/MS.2015.35

2015 1156

“Two innovations are enhancing programming languages’

capabilities. First, modularity lets you combine independently

developed languages without changing their respective

definitions. A language is no longer a fixed quantity; you can

extend it with domain-specific constructs as needed. Second,

projectional editing lets you build editors and IDEs that don’t

require parsers. Such editors and IDEs support a range of

tightly integrated notations, including textual, symbolic,

tabular, and graphical notations.”

Markus Voelter, Jos Warmer, Bernd Kolb, Projecting a Modular

Future, IEEE Software, September 2015.929

929DOI: 10.1109/MS.2014.103

http://doi.ieeecomputersociety.org/10.1109/MS.2014.103

2015 1157

“A swift execution from idea to market has become a key

competitive advantage for software companies to enable them

to survive and grow in turbulent business environments. To

combat this challenge, companies are using hackathons. A

hackathon is a highly engaging, continuous event in which

people in small groups produce working software prototypes

in a limited amount of time. … However, hackathons pose the

challenge of how to transform those promising prototypes

into finalized products that create revenue and real business

value.”

Marko Komssi, Danielle Pichlis, Mikko Raatikainen, Klas

Kindstrom, Janne Jarvinen, What are Hackathons for?, IEEE

Software, September 2015.930

930DOI: 10.1109/MS.2014.78

http://doi.ieeecomputersociety.org/10.1109/MS.2014.78

2015 1158

“Software adaptation has become prominent owing to the

proliferation of software in everyday devices. In particular,

computing with the Internet of Things requires adaptability.

Traditional software maintenance, which involves long,

energy-consuming cycles, is no longer satisfactory.

Adaptation is a lightweight software evolution that provides

more transparent maintenance for users.”

Franck Barbier, Eric Cariou, Olivier Le Goaer, Samson Pierre,

Software Adaptation: Classification and a Case Study with

State Chart XML, IEEE Software, September 2015.931

931DOI: 10.1109/MS.2014.130

http://doi.ieeecomputersociety.org/10.1109/MS.2014.130

2015 1159

2015 1160

“Refactoring changes a program’s source code without

changing its external behavior, typically to improve the

software’s design.”

Emerson Murphy-Hill, Don Roberts, Peter Sommerlad, William

F. Opdyke, Refactoring [Guest editors’ introduction], IEEE

Software, November 2015.932

932DOI: 10.1109/MS.2015.136

http://doi.ieeecomputersociety.org/10.1109/MS.2015.136

2015 1161

“The safety issue—that a refactoring shouldn’t break

working code—was recognized as critical to industrial

adoption. It also raised other interesting research issues.”

William G. Griswold, William F. Opdyke, The Birth of

Refactoring: A Retrospective on the Nature of High-Impact

Software Engineering Research, IEEE Software, November

2015.933

933DOI: 10.1109/MS.2015.107

http://doi.ieeecomputersociety.org/10.1109/MS.2015.107

2015 1162

“Developers won’t use tools that seem unreliable. So, the

widespread use of refactoring tools speaks to their apparent

reliability. However, they aren’t error-free. They work just well

enough to be useful, and they break in relatively unimportant

ways.”

Munawar Hafiz, Jeffrey Overbey, Refactoring Myths, IEEE

Software, November 2015.934

934DOI: 10.1109/MS.2015.130

http://doi.ieeecomputersociety.org/10.1109/MS.2015.130

2015 1163

“Refactoring is a key approach for managing technical debt.

In the past few years, refactoring techniques and tools have

received considerable attention from researchers and tool

vendors.”

Tushar Sharma, Girish Suryanarayana, Ganesh Samarthyam,

Challenges to and Solutions for Refactoring Adoption: An

Industrial Perspective, IEEE Software, November 2015.935

935DOI: 10.1109/MS.2015.105

http://doi.ieeecomputersociety.org/10.1109/MS.2015.105

2015 1164

“To improve responsiveness, developers often use

asynchronous programming. In the post-PC era,

asynchronous programming is even more in demand because

mobile and wearable devices have limited resources and

access the network excessively. One current development task

is refactoring long-running, blocking synchronous code (for

example, accessing the Web, a cloud, a database, or a file

system) into nonblocking asynchronous code.”

Danny Dig, Refactoring for Asynchronous Execution on

Mobile Devices, IEEE Software, November 2015.936

936DOI: 10.1109/MS.2015.133

http://doi.ieeecomputersociety.org/10.1109/MS.2015.133

2015 1165

“Although database refactoring has been advocated as an

important area of database development, little research has

studied its implications. … The experience led to five key

lessons learned: refactoring should be automated whenever

possible, the database catalog is crucial, refactoring is easier

when it’s done progressively, refactoring can help optimize

an application and streamline its code base, and refactoring

related to application development requires a complex skill

set and must be applied sensibly.”

Gregory Vial, Database Refactoring: Lessons from the

Trenches, IEEE Software, November 2015.937

937DOI: 10.1109/MS.2015.131

http://doi.ieeecomputersociety.org/10.1109/MS.2015.131

2016

2016 1167

2016 1168

“We live in a world of unprecedented complexity and

astonishing possibility. We should never forget our past, for

those who came before us in computing enabled those

possibilities.”

Grady Booch, Remembrance of Things Past, IEEE Software,

January 2016.938

938DOI: 10.1109/MS.2016.10

http://doi.ieeecomputersociety.org/10.1109/MS.2016.10

2016 1169

“The debacle with the VW ‘defeat device’ raises some

unsettling questions. Are any other companies doing this,

or-if we take a more cynical standpoint-how many are doing

this? If they aren’t, are they still using software practices

almost as dubious? How do we decide what’s reasonable,

given software’s extraordinary ability to give hardware its

character?”

Les Hatton, Michiel van Genuchten, When Software Crosses a

Line, IEEE Software, January 2016.939

939DOI: 10.1109/MS.2016.6

http://doi.ieeecomputersociety.org/10.1109/MS.2016.6

2016 1170

“This year marks the 50th anniversary of the Turing Award,

which was first given to Alan Perlis, an oft-quoted

mathematician who described the relationship between

humans and computers as having ‘a vitality like a gangly

youth growing out of his clothes within an endless puberty.’

Now that our dependence on software permeates nearly every

aspect of our lives, it’s time to ask ourselves where this

relationship is headed and, even though software engineering

is still a relatively new discipline, how much we’ve matured.”

Forrest Shull, Anita Carleton, Jeromy Carriere, Rafael

Prikladnicki, Dongmei Zhang, The Future of Software

Engineering, IEEE Software, January 2016.940

940DOI: 10.1109/MS.2016.8

http://doi.ieeecomputersociety.org/10.1109/MS.2016.8

2016 1171

“Tim O’Reilly: Code for America is changing government and

changing how we think about our role as software

professionals. Its work is deeply rooted in the notion that you

can no longer govern without using digital technology.

Technology is central to how we deliver services today and

how people access them. “

Andrew Moore, Tim O’Reilly, Paul D. Nielsen, Kevin Fall, Four

Thought Leaders on Where the Industry Is Headed, IEEE

Software, January 2016.941

941DOI: 10.1109/MS.2016.1

http://doi.ieeecomputersociety.org/10.1109/MS.2016.1

2016 1172

“To most people, “massive systems” probably means those

systems run by NASA, airline companies, or large banks, or

operating systems such as Microsoft Windows. What’s in

common? They all have complex components or subsystems,

deal with massive data, support millions of customers, require

real-time response, and more. If they malfunction,

catastrophe might ensue. By those standards, many systems

run by today’s Internet companies also qualify as massive.

As the Internet grows so quickly, many Internet companies

are suffering the same problems that massive systems have

suffered. “

Zhengrong Tang, Melissa Yang, Joshua Xiang, John Liu, The

Future of Chinese Software Development, IEEE Software,

January 2016.942

942DOI: 10.1109/MS.2016.19

http://doi.ieeecomputersociety.org/10.1109/MS.2016.19

2016 1173

“Practitioners must become mediators of the process of

creating a humane experience and expand their practice to

draw from disciplines such as experience design, systems

thinking, economics, and digital strategy. They must do what

they can to mitigate the negative consequences of

technology while continuing to exploit and amplify its positive

impacts.”

Claudia de O. Melo, Ronaldo Ferraz, Rebecca J. Parsons, Brazil

and the Emerging Future of Software Engineering, IEEE

Software, January 2016.943

943DOI: 10.1109/MS.2016.28

http://doi.ieeecomputersociety.org/10.1109/MS.2016.28

2016 1174

“Software is being produced so fast that its growth hinders its

sustainability. Technical debt, which encompasses internal

software quality, evolution and maintenance, reengineering,

and economics, is growing such that its management is

becoming the dominant driver of software engineering

progress. It spans the software engineering life cycle, and its

management capitalizes on recent advances in fields such as

source code analysis, quality measurement, and project

management. Managing technical debt will become an

investment activity applying economic theories.”

Paris Avgeriou, Philippe Kruchten, Robert L. Nord, Ipek Ozkaya,

Carolyn Seaman, Reducing Friction in Software Development,

IEEE Software, January 2016.944

944DOI: 10.1109/MS.2016.13

http://doi.ieeecomputersociety.org/10.1109/MS.2016.13

2016 1175

“Almost surreptitiously, crowdsourcing has entered software

engineering practice. In-house development, contracting,

and outsourcing still dominate, but many development

projects use crowdsourcing-for example, to squash bugs, test

software, or gather alternative UI designs. Although the

overall impact has been mundane so far, crowdsourcing could

lead to fundamental, disruptive changes in how software is

developed.”

Thomas D. LaToza, Andre van der Hoek, Crowdsourcing in

Software Engineering: Models, Motivations, and Challenges,

IEEE Software, January 2016.945

945DOI: 10.1109/MS.2016.12

http://doi.ieeecomputersociety.org/10.1109/MS.2016.12

2016 1176

“An evaluation of recent industrial and societal trends

revealed three key factors driving software engineering’s

future: speed, data, and ecosystems.”

Jan Bosch, Speed, Data, and Ecosystems: The Future of

Software Engineering, IEEE Software, January 2016.946

946DOI: 10.1109/MS.2016.14

http://doi.ieeecomputersociety.org/10.1109/MS.2016.14

2016 1177

“Today’s social-coding tools foreshadow a transformation of

the software industry, as it relies increasingly on open

libraries, frameworks, and code fragments. Our vision calls

for new intelligently transparent services that support rapid

development of innovative products while helping developers

manage risk and issuing them early warnings of looming

failures. Intelligent transparency is enabled by an

infrastructure that applies analytics to data from all phases of

the life cycle of open source projects, from development to

deployment. Such an infrastructure brings stakeholders the

information they need when they need it.”

James Herbsleb, Christian Kastner, Christopher Bogart,

Intelligently Transparent Software Ecosystems, IEEE

Software, January 2016.947

947DOI: 10.1109/MS.2015.156

http://doi.ieeecomputersociety.org/10.1109/MS.2015.156

2016 1178

“We’re living in a physical world that’smoving at the speed of

software. This means that software’s trajectory will drive

software engineering, not vice versa. However, software

engineering is also driven by visionary corporate leaders,

backed by skilled software developers.”

George Hurlburt, Jeffrey Voas, Software is Driving Software

Engineering?, IEEE Software, January 2016.948

948DOI: 10.1109/MS.2016.22

http://doi.ieeecomputersociety.org/10.1109/MS.2016.22

2016 1179

“Apache Mesos, … abstracts away many of the hassles of

managing a distributed system. … You don’t have to think

about how you’re going to get your task to a different

machine with Mesos. You just tell it, ‘Run this task using these

resources; those resources are tied to a particular machine,’

and then Mesos takes care of getting the task there, starting

the task, and watching it while it’s actually running on that

machine. Mesos provides primitives that somebody building a

distributed system can take advantage of. “

Jeff Meyerson, Ben Hindman on Apache Mesos, IEEE Software,

January 2016.949

949DOI: 10.1109/MS.2016.18

http://doi.ieeecomputersociety.org/10.1109/MS.2016.18

2016 1180

2016 1181

“Different ages of humanity have required different modes of

thinking. These modes aren’t only reflections of the particular

circumstances of life in each age; they’re also projections of

the forces that propel us to the next.”

Grady Booch, The Computational Human, IEEE Software,

March 2016.950

950DOI: 10.1109/MS.2016.59

http://doi.ieeecomputersociety.org/10.1109/MS.2016.59

2016 1182

“A software retrofit can address problems of business-critical

systems that are no longer maintainable.”

Thomas Ronzon, Software Retrofit in High-Availability

Systems: When Uptime Matters, IEEE Software, March

2016.951

951DOI: 10.1109/MS.2016.49

http://doi.ieeecomputersociety.org/10.1109/MS.2016.49

2016 1183

“Naming conventions affect the readability of your code and

the ease with which you can find your way around when you’re

reviewing that code. Naming conventions aren’t meant to

help the compiler. A compiler has no trouble distinguishing

names, no matter how long, short, or obscure they are. But to

us humans, they can matter a great deal.”

Gerard J. Holzmann, Code Clarity, IEEE Software, March

2016.952

952DOI: 10.1109/MS.2016.44

http://doi.ieeecomputersociety.org/10.1109/MS.2016.44

2016 1184

“Software engineering for big data systems is complex and

faces challenges including pervasive distribution, write-heavy

workloads, variable request loads, computation-intensive

analytics, and high availability.”

Ian Gorton, Ayse Basar Bener, Audris Mockus, Software

Engineering for Big Data Systems, IEEE Software, March

2016.953

953DOI: 10.1109/MS.2016.47

http://doi.ieeecomputersociety.org/10.1109/MS.2016.47

2016 1185

“Conventional horizontal evolutionary prototyping for

small-data system development is inadequate and too

expensive for identifying, analyzing, and mitigating risks in big

data system development. RASP (Risk-Based,

Architecture-Centric Strategic Prototyping) is a model for

cost-effective, systematic risk management in agile big data

system development. It uses prototyping strategically and

only in areas that architecture analysis can’t sufficiently

address.”

Hong-Mei Chen, Rick Kazman, Serge Haziyev, Strategic

Prototyping for Developing Big Data Systems, IEEE Software,

March 2016.954

954DOI: 10.1109/MS.2016.36

http://doi.ieeecomputersociety.org/10.1109/MS.2016.36

2016 1186

“Video data has become the largest source of big data.

Owing to video data’s complexities, velocity, and volume,

public security and other surveillance applications require

efficient, intelligent runtime video processing.”

Weishan Zhang, Liang Xu, Zhongwei Li, Qinghua Lu, Yan Liu, A

Deep-Intelligence Framework for Online Video Processing,

IEEE Software, March 2016.955

955DOI: 10.1109/MS.2016.31

http://doi.ieeecomputersociety.org/10.1109/MS.2016.31

2016 1187

“Big data systems (BDSs) are complex, consisting of multiple

interacting hardware and software components, such as

distributed computing nodes, databases, and middleware. Any

of these components can fail. Finding the failures’ root

causes is extremely laborious. Analysis of BDS-generated

logs can speed up this process. The logs can also help

improve testing processes, detect security breaches,

customize operational profiles, and aid with any other tasks

requiring runtime-data analysis. However, practical

challenges hamper log analysis tools’ adoption.”

Andriy Miranskyy, Abdelwahab Hamou-Lhadj, Enzo Cialini, Alf

Larsson, Operational-Log Analysis for Big Data Systems:

Challenges and Solutions, IEEE Software, March 2016.956

956DOI: 10.1109/MS.2016.33

http://doi.ieeecomputersociety.org/10.1109/MS.2016.33

2016 1188

“Many real-world data analysis scenarios require pipelining

and integration of multiple (big) data-processing and

data-analytics jobs, which often execute in heterogeneous

environments, such as MapReduce; Spark; or R, Python, or

Bash scripts. Such a pipeline requires much glue code to get

data across environments.”

Dongyao Wu, Liming Zhu, Xiwei Xu, Sherif Sakr, Daniel Sun,

Qinghua Lu, Building Pipelines for Heterogeneous Execution

Environments for Big Data Processing, IEEE Software, March

2016.957

957DOI: 10.1109/MS.2016.35

http://doi.ieeecomputersociety.org/10.1109/MS.2016.35

2016 1189

“Clemens Szyperski (Microsoft), Martin Petitclerc (IBM), and

Roger Barga (Amazon Web Services) answer three questions:

What major challenges do you face when building scalable,

big data systems? How do you address these challenges?

Where should the research community focus its efforts to

create tools and approaches for building highly reliable,

scalable, big data systems?”

Clemens Szyperski, Martin Petitclerc, Roger Barga, Three

Experts on Big Data Engineering, IEEE Software, March

2016.958

958DOI: 10.1109/MS.2016.58

http://doi.ieeecomputersociety.org/10.1109/MS.2016.58

2016 1190

“It’s also important to understand the difference between

what a single programmer can do and what large teams of

programmers can do. Even the best practices of refactoring

are really a joke in the context of a large legacy application.

Refactoring tools really don’t help you with large legacies.”

Dave Thomas, Innovating Legacy Systems, IEEE Software,

March 2016.959

959DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2016.38

https://doi.ieeecomputersociety.org/10.1109/MS.2016.38

2016 1191

2016 1192

“The next generation of software-intensive systems will be

taught instead of programmed. This poses considerable

pragmatic challenges in how we develop, deliver, and evolve

them.”

Grady Booch, It Is Cold. And Lonely., IEEE Software, May

2016.960

960DOI: 10.1109/MS.2016.85

http://doi.ieeecomputersociety.org/10.1109/MS.2016.85

2016 1193

“Following certain best practices for visual communication

can help bridge the gap between IT architects and business

stakeholders. These practices stem from disciplines such as

psychology, graphic design, communication science, and

cartooning.”

Jochem Schulenklopper, Eelco Rommes, Why They Just Don’t

Get It: Communicating about Architecture with Business

Stakeholders, IEEE Software, May 2016.961

961DOI: 10.1109/MS.2016.67

http://doi.ieeecomputersociety.org/10.1109/MS.2016.67

2016 1194

“The emerging DevOps movement emphasizes development

and operations staff working together as early as

possible–sharing tools, processes, and practices that smooth

the production path.”

Eoin Woods, Operational: The Forgotten Architectural View,

IEEE Software, May 2016.962

962DOI: 10.1109/MS.2016.86

http://doi.ieeecomputersociety.org/10.1109/MS.2016.86

2016 1195

“Building a secure system requires proactive, rigorous

analysis of the threats to which it might be exposed, followed

by systematic transformation of those threats into

security-related requirements.”

Jane Cleland-Huang, Tamara Denning, Tadayoshi Kohno,

Forrest Shull, Samuel Weber, Keeping Ahead of Our

Adversaries, IEEE Software, May 2016.963

963DOI: 10.1109/MS.2016.75

http://doi.ieeecomputersociety.org/10.1109/MS.2016.75

2016 1196

“DevOps aims to reduce the time between committing a

system change and placing the change into normal

production, while ensuring high quality.”

Liming Zhu, Len Bass, George Champlin-Scharff, DevOps and

Its Practices, IEEE Software, May 2016.964

964DOI: 10.1109/MS.2016.81

http://doi.ieeecomputersociety.org/10.1109/MS.2016.81

2016 1197

“Modern software-based services are implemented as

distributed systems with complex behavior and failure modes.

Many large tech organizations are using experimentation to

verify such systems’ reliability. Netflix engineers call this

approach chaos engineering.”

Ali Basiri, Niosha Behnam, Ruud de Rooij, Lorin Hochstein, Luke

Kosewski, Justin Reynolds, Casey Rosenthal, Chaos

Engineering, IEEE Software, May 2016.965

965DOI: 10.1109/MS.2016.60

http://doi.ieeecomputersociety.org/10.1109/MS.2016.60

2016 1198

“When DevOps started gaining momentum in the software

industry, one of the first service-based architectural styles to

be introduced, be applied in practice, and become popular

was microservices. Migrating monolithic architectures to

cloud-native architectures such as microservices reaps many

benefits, such as adaptability to technological changes and

independent resource management for different system

components.”

Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi,

Microservices Architecture Enables DevOps: Migration to a

Cloud-Native Architecture, IEEE Software, May 2016.966

966DOI: 10.1109/MS.2016.64

http://doi.ieeecomputersociety.org/10.1109/MS.2016.64

2016 1199

“Wotif Group used DevOps principles to recover from the

downward spiral of manual release activity that many IT

departments face. Its approach involved the idea of ‘making it

easy to do the right thing.’ By defining the right thing

(deployment standards) for development and operations

teams and making it easy to adopt, Wotif drastically improved

the average release cycle time.”

Matt Callanan, Alexandra Spillane, DevOps: Making It Easy to

Do the Right Thing, IEEE Software, May 2016.967

967DOI: 10.1109/MS.2016.66

http://doi.ieeecomputersociety.org/10.1109/MS.2016.66

2016 1200

“Interconnected computing systems in various forms will

soon permeate our lives, realizing the Internet of Things (IoT)

and letting us enjoy novel, enhanced services that promise to

improve our everyday life. Nevertheless, this new reality

introduces significant challenges in terms of performance,

scaling, usability, and interoperability. Leveraging the

benefits of service-oriented architectures (SOAs) can help

alleviate many of the issues that developers, implementers,

and users alike must face in the context of the IoT.”

Konstantinos Fysarakis, Damianos Mylonakis, Charalampos

Manifavas, Ioannis Papaefstathiou, Node.DPWS: Efficient Web

Services for the Internet of Things, IEEE Software, May

2016.968

968DOI: 10.1109/MS.2015.155

http://doi.ieeecomputersociety.org/10.1109/MS.2015.155

2016 1201

“With the increasing importance, size, and complexity of

automated test suites, the need exists for suitable methods

and tools to develop, assess the quality of, and maintain test

code (scripts) in parallel with regular production

(application) code.”

Vahid Garousi, Michael Felderer, Developing, Verifying, and

Maintaining High-Quality Automated Test Scripts, IEEE

Software, May 2016.969

969DOI: 10.1109/MS.2016.30

http://doi.ieeecomputersociety.org/10.1109/MS.2016.30

2016 1202

“Building on lean and agile practices, DevOps means

end-to-end automation in software development and delivery.

Hardly anybody will be able to approach it with a

cookbook-style approach, but most developers will benefit

from better connecting the previously isolated silos of

development and operations. Many DevOps tools exist that

can help them do this.”

Christof Ebert, Gorka Gallardo, Josune Hernantes, Nicolas

Serrano, DevOps, IEEE Software, May 2016.970

970DOI: 10.1109/MS.2016.68

http://doi.ieeecomputersociety.org/10.1109/MS.2016.68

2016 1203

2016 1204

“Mobile apps increasingly constitute complete ecosystems to

support businesses such as farming. … Having the right data

at the right time at the right place is crucial for high user

productivity and a good user experience. In particular, offline

capability is important but difficult. “

Susanne Braun, Ralf Carbon, Matthias Naab, Piloting a

Mobile-App Ecosystem for Smart Farming, IEEE Software, July

2016.971

971DOI: 10.1109/MS.2016.98

http://doi.ieeecomputersociety.org/10.1109/MS.2016.98

2016 1205

“Many organizations use business process models to

document business operations and formalize business

requirements in software-engineering projects. The Business

Process Model and Notation (BPMN), a specification by the

Object Management Group, has evolved into the leading

standard for process modeling. One challenge is BPMN’s

complexity: it offers a huge variety of elements and often

several representational choices for the same semantics.”

Henrik Leopold, Jan Mendling, Oliver Gunther, Learning from

Quality Issues of BPMN Models from Industry, IEEE Software,

July 2016.972

972DOI: 10.1109/MS.2015.81

http://doi.ieeecomputersociety.org/10.1109/MS.2015.81

2016 1206

“In the mobile-app ecosystem, user ratings of apps (a

measure of user perception) are extremely important because

they correlate strongly with downloads and hence revenue.”

Hammad Khalid, Meiyappan Nagappan, Ahmed E. Hassan,

Examining the Relationship between FindBugs Warnings and

App Ratings, IEEE Software, July 2016.973

973DOI: 10.1109/MS.2015.29

http://doi.ieeecomputersociety.org/10.1109/MS.2015.29

2016 1207

“A proposed data-driven software quality improvement

method has three elements. First, the downstream Customer

Quality Metric (CQM) quantifies quality as customers perceive

it. On the basis of data collected after systems are deployed, it

measures how serious defects affect customers. Second, the

upstream Implementation Quality Index (IQI) measures the

effectiveness of error removal during development. IQI

predicts future customer quality; it has a positive correlation

with CQM. Finally, prioritization tools and techniques help

focus limited development resources on the riskiest files in the

code.”

Randy Hackbarth, Audris Mockus, John Palframan, Ravi Sethi,

Improving Software Quality as Customers Perceive It, IEEE

Software, July 2016.974

974DOI: 10.1109/MS.2015.76

http://doi.ieeecomputersociety.org/10.1109/MS.2015.76

2016 1208

“Measurement of software security is an ongoing research

field. Privacy is also becoming an imperative target as social

networking and ubiquitous computing evolve and users

exchange high volumes of personal information. However,

security and privacy alone don’t guarantee proper data

protection; software must also be dependable.”

George Hatzivasilis, Ioannis Papaefstathiou, Charalampos

Manifavas, Software Security, Privacy, and Dependability:

Metrics and Measurement, IEEE Software, July 2016.975

975DOI: 10.1109/MS.2016.61

http://doi.ieeecomputersociety.org/10.1109/MS.2016.61

2016 1209

“Dynamic program analysis, such as with profiling, tracing,

and bug-finding tools, is essential for software engineering.

Unfortunately, implementing dynamic analysis for managed

languages such as Java is unduly difficult and error prone

because the runtime environments provide only complex

low-level mechanisms.”

Yudi Zheng, Stephen Kell, Lubomir Bulej, Haiyang Sun, Walter

Binder, Comprehensive Multiplatform Dynamic Program

Analysis for Java and Android, IEEE Software, July 2016.976

976DOI: 10.1109/MS.2015.151

http://doi.ieeecomputersociety.org/10.1109/MS.2015.151

2016 1210

“A well-known adage is ‘diversity brings innovation.’ Diversity

can be in culture, thinking, discipline, gender, and many

more aspects. The result is the same: the chances for creating

innovation in a given context increase when diversity is

involved. To some extent, this principle should also hold for

gender diversity in software teams. Achieving gender

diversity in IT-related fields has been a goal for decades, but

still, too few women choose such a career. But what skills or

traits assigned to the feminine role bring concrete

advantages to software teams?”

Maryam Razavian, Patricia Lago, Feminine Expertise in

Architecting Teams, IEEE Software, July 2016.977

977DOI: 10.1109/MS.2015.84

http://doi.ieeecomputersociety.org/10.1109/MS.2015.84

2016 1211

“Users continue to stumble upon software bugs, despite

developers’ efforts to build and test high-quality software.

Although traditional testing and quality assurance

techniques are extremely valuable, software testing should

pay more attention to exploration. Exploration can directly

apply knowledge and learning to the core of industrial

software testing, revealing more relevant bugs earlier.”

Juha Itkonen, Mika V. Mantyla, Casper Lassenius, Test Better

by Exploring: Harnessing Human Skills and Knowledge, IEEE

Software, July 2016.978

978DOI: 10.1109/MS.2015.85

http://doi.ieeecomputersociety.org/10.1109/MS.2015.85

2016 1212

2016 1213

“Huge industries, from the automotive and healthcare

industries to finance and entertainment, center increasingly

on software. Managing such a software business is tough

because software’s ethereal nature offers infinite lucrative or

catastrophic choices. The main things to manage are the

business model, the execution strategy, the product or

service, and the development process.”

Diomidis Spinellis, Managing a Software Business, IEEE

Software, September 2016.979

979DOI: 10.1109/MS.2016.111

http://doi.ieeecomputersociety.org/10.1109/MS.2016.111

2016 1214

“Computational humor is a technically intriguing problem.

And, in the journey to understand the theories, mechanisms,

and algorithms that discern and define funny, we learn

something about ourselves and what it means to be human.”

Grady Booch, No Laughing Matter, IEEE Software, September

2016.980

980DOI: 10.1109/MS.2016.127

http://doi.ieeecomputersociety.org/10.1109/MS.2016.127

2016 1215

“Developers of systems of systems face challenges such as

heterogeneous, inconsistent, and changing elements;

continuous evolution and deployment; decentralized control;

and inherently conflicting and often unknowable

requirements.”

Michael Vierhauser, Rick Rabiser, Paul Granbacher, Monitoring

Requirements in Systems of Systems, IEEE Software,

September 2016.981

981DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2016.112

https://doi.ieeecomputersociety.org/10.1109/MS.2016.112

2016 1216

“Developers of systems of systems (SoSs) face challenges

such as heterogeneous, inconsistent, and changing elements;

continuous evolution and deployment; decentralized control;

and inherently conflicting and often unknowable

requirements.”

Michael Vierhauser, Rick Rabiser, Paul Grunbacher, Monitoring

Requirements in Systems of Systems, IEEE Software,

September 2016.982

982DOI: 10.1109/MS.2016.112

http://doi.ieeecomputersociety.org/10.1109/MS.2016.112

2016 1217

“Simulation software is important to our understanding of the

universe. The intrinsic multiphysics aspects are spiced with a

range of temporal scales and spatial scales, both of which

cover more digits than are available in the standard

hardware.”

Simon Portegies Zwart, Jeroen Bedorf, Creating the Virtual

Universe, IEEE Software, September 2016.983

983DOI: 10.1109/MS.2016.113

http://doi.ieeecomputersociety.org/10.1109/MS.2016.113

2016 1218

“The software architecture pendulum is swinging away from

traditional practices and toward agile and continuous

practices. To be successful in this new world, architects

should emphasize products over projects, drive architectural

decisions, understand code, and communicate and

collaborate effectively with delivery teams.”

Murat Erder, Pierre Pureur, What’s the Architect’s Role in an

Agile, Cloud-Centric World?, IEEE Software, September

2016.984

984DOI: 10.1109/MS.2016.119

http://doi.ieeecomputersociety.org/10.1109/MS.2016.119

2016 1219

“Small and medium-sized enterprises depend heavily on

their capability to differentiate themselves from their

competitors through innovative approaches. Innovation

management assumes that systematically applying strategies

combined with appropriate methods and tools increases the

ability to build innovative products and services. To leverage

their competitive capabilities, small companies involved in

software development must combine innovation management

and software engineering practices.”

Ricardo Eito-Brun, Miguel-Angel Sicilia, Innovation-Driven

Software Development: Leveraging Small Companies’

Product-Development Capabilities, IEEE Software, September

2016.985

985DOI: 10.1109/MS.2016.63

http://doi.ieeecomputersociety.org/10.1109/MS.2016.63

2016 1220

“Software providers differ widely in productivity and quality.

Traditional means of evaluation, such as CVs and client

references, fail to separate the competent from the

incompetent. Trialsourcing–having multiple providers create

sample pieces of software for evaluation–can help clients

select providers.”

Magne Jorgensen, Better Selection of Software Providers

through Trialsourcing, IEEE Software, September 2016.986

986DOI: 10.1109/MS.2015.24

http://doi.ieeecomputersociety.org/10.1109/MS.2015.24

2016 1221

“Most companies have learned that cost calculations for

offshore outsourcing shouldn’t be limited to hourly wages.

Looking at salaries alone, you could naively hope for cost

reductions of up to 90 percent. However, don’t underestimate

the cost of knowledge transfer, travel, attrition,

miscommunication, and so on. … The offshore team’s true

hourly costs took three years to become comparable with

those of the in-house team. Getting close to the break-even

point took five years. Learning costs due to offshore

employee turnover were the primary cost factor to get under

control.”

Darja Smite, Rini van Solingen, What’s the True Hourly Cost of

Offshoring?, IEEE Software, September 2016.987

987DOI: 10.1109/MS.2015.82

http://doi.ieeecomputersociety.org/10.1109/MS.2015.82

2016 1222

“You could view maintenance as an impending operational

cost tsunami, owing to seismic development activities. It’s no

longer tenable to keep creating new individual solutions to the

same basic problems because those solutions must be

maintained as long as they live, binding expensive human

resources that are constantly declining.”

Harry M. Sneed, Chris Verhoef, From Software Development to

Software Assembly, IEEE Software, September 2016.988

988DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2015.78

https://doi.ieeecomputersociety.org/10.1109/MS.2015.78

2016 1223

“In machine learning, a computer first learns to perform a

task by studying a training set of examples. The computer

then performs the same task with data it hasn’t encountered

before.”

Panos Louridas, Christof Ebert, Machine Learning, IEEE

Software, September 2016.989

989DOI: 10.1109/MS.2016.114

http://doi.ieeecomputersociety.org/10.1109/MS.2016.114

2016 1224

“Too many tests is the same as not enough tests. In both

cases it’s suboptimal. Whether you waste time debugging

because you don’t have enough tests or you waste time

maintaining tests that don’t need to be there, at the end of

the day both of those things amount to waste.”

Stefan Tilkov, Jay Fields on Working with Unit Tests, IEEE

Software, September 2016.990

990DOI: 10.1109/MS.2016.121

http://doi.ieeecomputersociety.org/10.1109/MS.2016.121

2016 1225

2016 1226

“Being a good software architect has never been easy.

Changes in the software industry are making the job even

more challenging. The key drivers are the rising role of

software in systems and their operation; more emphasis on

reuse, agility, and testability during software development;

and several quality elements increasingly affected by

architectural choices.”

Diomidis Spinellis, The Changing Role of the Software

Architect, IEEE Software, November 2016.991

991DOI: 10.1109/MS.2016.133

http://doi.ieeecomputersociety.org/10.1109/MS.2016.133

2016 1227

“Documenting the time dimension part of your architecture

might look like extra work. However, anticipation should be a

large part of your job as an architect, anyway. If you

communicate your anticipation as an evolution viewpoint or

architecture roadmap, your architecture description will stay

valid longer. And, you’ll have a ready answer when

stakeholders ask how you’ve addressed their change and

planning concerns.”

Eltjo Poort, Just Enough Anticipation: Architect Your Time

Dimension, IEEE Software, November 2016.992

992DOI: 10.1109/MS.2016.134

http://doi.ieeecomputersociety.org/10.1109/MS.2016.134

2016 1228

“As new and exciting healthcare applications arise that use

smart technologies, the Internet of Things, data analytics,

and other technologies, a critical problem is emerging: the

potential loss of caring. Although these exciting technologies

have improved patient care by allowing for better assessment,

surveillance, and treatment, their use can disassociate the

caregiver from the patient, essentially removing the ”care”

from healthcare. So, you can view caring as an undiscovered

-ility that ranks at least as important as other well-known

-ilities in healthcare systems.”

Nancy Laplante, Phillip A. Laplante, Jeffrey Voas, Caring: An

Undiscovered ”Super -ility” of Smart Healthcare, IEEE

Software, November 2016.993

993DOI: 10.1109/MS.2016.136

http://doi.ieeecomputersociety.org/10.1109/MS.2016.136

2016 1229

“When customers visit a Brazilian e-commerce site and

search for a product, they’re likely using software developed

by Neemu, a start-up created in Manaus, a city in the heart of

the Amazon rainforest. Nowadays, millions of people

throughout Brazil use this software, which demonstrates

alternative economic development in Amazonia that has low

impact on the environment.”

Edleno Silva de Moura, Mauro Rojas Herrera, Leonardo Santos,

Tayana Conte, When Software Impacts the Economy and

Environment, IEEE Software, November 2016.994

994DOI: 10.1109/MS.2016.135

http://doi.ieeecomputersociety.org/10.1109/MS.2016.135

2016 1230

“Forty years ago, Thomas McCabe introduced his famous

cyclomatic complexity (CC) metric. Today, it’s still one of the

most popular and meaningful measurements for analyzing

code. “

Christof Ebert, James Cain, Cyclomatic Complexity, IEEE

Software, November 2016.995

995DOI: 10.1109/MS.2016.147

http://doi.ieeecomputersociety.org/10.1109/MS.2016.147

2016 1231

“Internet scale, the increasing rate of technology evolution,

and the broad adoption of lean and agile methods have

triggered a profound change in not only application and

infrastructure architectures but also the software architect’s

roles and responsibilities.”

Gregor Hohpe, Ipek Ozkaya, Uwe Zdun, Olaf Zimmermann, The

Software Architect’s Role in the Digital Age, IEEE Software,

November 2016.996

996DOI: 10.1109/MS.2016.137

http://doi.ieeecomputersociety.org/10.1109/MS.2016.137

2016 1232

“The popularity of agile methods such as Scrum and Kanban,

with their clear focus on team collaboration, threatens many

roles traditionally assigned to individual experts. Some

organizations are even challenging the raison d’être of the

software architect role. However, researchers’ experiences

developing connected-vehicle software revealed two reasons

why successful projects still often assign architecture-related

responsibilities to individual experts acting as software

architects. First, the experts help effectively manage

complexity; second, they act as knowledge multipliers when

development must scale up.”

Soren Frey, Lambros Charissis, Jens Nahm, How Software

Architects Drive Connected Vehicles, IEEE Software,

November 2016.997

997DOI: 10.1109/MS.2016.145

http://doi.ieeecomputersociety.org/10.1109/MS.2016.145

2016 1233

“Software architects are key assets for successful

development projects. … researchers investigated how

architects at Ericsson were organized, their roles and

responsibilities, and the effort they spent guarding and

governing a large-scale legacy product developed by teams at

multiple locations. … the architectural decisions were

centralized to a team of architects. The team extensively used

code reviews to not only check the code’s state but also

reveal defects that could turn into maintainability problems.

… the effort architects spend designing architecture,

guarding its integrity and evolvability, and mentoring

development teams is directly related to team maturity.”

Ricardo Britto, Darja Smite, Lars-Ola Damm, Software

Architects in Large-Scale Distributed Projects: An Ericsson

Case Study, IEEE Software, November 2016.998

998DOI: 10.1109/MS.2016.146

http://doi.ieeecomputersociety.org/10.1109/MS.2016.146

2016 1234

“Owing to the increasing amount of computation in

electromechanical devices, the role of software architect is

often found in embedded-systems development. However,

because computer scientists usually have limited knowledge

of embedded-systems concepts such as controllers,

actuators, and buses, embedded-software architects are often

engineers with no education in software architecture basics,

which is normally a topic in computer science courses.”

Pablo Oliveira Antonino, Andreas Morgenstern, Thomas Kuhn,

Embedded-Software Architects: It’s Not Only about the

Software, IEEE Software, November 2016.999

999DOI: 10.1109/MS.2016.142

http://doi.ieeecomputersociety.org/10.1109/MS.2016.142

2016 1235

“Software architects don’t just design architecture

components or champion architecture qualities; they often

must guide and harmonize the entire community of project

stakeholders. The community-shepherding aspects of the

architect’s role have been gaining attention, given the

increasing importance of complex ‘organizational rewiring’

scenarios such as DevOps, open source strategies, transitions

to agile development, and corporate acquisitions”

Damian A. Tamburri, Rick Kazman, Hamed Fahimi, The

Architect’s Role in Community Shepherding, IEEE Software,

November 2016.1000

1000DOI: 10.1109/MS.2016.144

http://doi.ieeecomputersociety.org/10.1109/MS.2016.144

2016 1236

“As software systems have evolved, so has software

architecture, with practices growing to meet each era’s new

challenges. The next phase of evolution–intelligent

connected systems–promises to be an exciting time for

software architects.”

Eoin Woods, Software Architecture in a Changing World, IEEE

Software, November 2016.1001

1001DOI: 10.1109/MS.2016.149

http://doi.ieeecomputersociety.org/10.1109/MS.2016.149

2016 1237

“High-maintenance code not only is verbose but also tends

to rely on unstated, poorly stated, or incompletely stated

assumptions. If you want to understand that type of code, you

need long chains of reasoning to figure out how and why it

works, and under which conditions it could start failing when

other parts of the system are updated. The reliance on hidden

assumptions is probably the most telling feature of

high-maintenance code.”

Gerard J. Holzmann, Hi Maintenance, IEEE Software,

November 2016.1002

1002DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2016.153

https://doi.ieeecomputersociety.org/10.1109/MS.2016.153

2017

2017 1239

2017 1240

“New wiring transformed ENIAC into a versatile

stored-program computer. Rewiring Internet of Things

infrastructures into a general-purpose computing fabric can

similarly change how modern computation interfaces with our

environment.”

Diomidis Spinellis, Software-Engineering the Internet of

Things, IEEE Software, January 2017.1003

1003DOI: 10.1109/MS.2017.15

http://doi.ieeecomputersociety.org/10.1109/MS.2017.15

2017 1241

“The proper alignment of requirements engineering and

testing (RET) can be key to software’s success. Three

practices can provide effective RET alignment: using test

cases as requirements, harvesting trace links, and reducing

distances between requirements engineers and testers.”

Elizabeth Bjarnason, Markus Borg, Aligning Requirements and

Testing: Working Together toward the Same Goal, IEEE

Software, January 2017.1004

1004DOI: 10.1109/MS.2017.14

http://doi.ieeecomputersociety.org/10.1109/MS.2017.14

2017 1242

“No consolidated set of software engineering best practices

for the Internet of Things (IoT) has yet emerged. Too often,

the landscape resembles the Wild West, with unprepared

programmers putting together IoT systems in ad hoc fashion

and throwing them out into the market, often poorly tested. In

addition, the academic sector is in danger of fragmenting into

specialized, often unrelated research areas.”

Xabier Larrucea, Annie Combelles, John Favaro, Kunal Taneja,

Software Engineering for the Internet of Things, IEEE

Software, January 2017.1005

1005DOI: 10.1109/MS.2017.28

http://doi.ieeecomputersociety.org/10.1109/MS.2017.28

2017 1243

“The Internet of Things (IoT) is a challenging combination of

distribution and heterogeneity. A number of software

engineering solutions address those challenges in isolation,

but few solutions tackle them in combination, which poses a

set of concrete challenges. The ThingML (Internet of Things

Modeling Language) approach attempts to address those

challenges.”

Brice Morin, Nicolas Harrand, Franck Fleurey, Model-Based

Software Engineering to Tame the IoT Jungle, IEEE Software,

January 2017.1006

1006DOI: 10.1109/MS.2017.11

http://doi.ieeecomputersociety.org/10.1109/MS.2017.11

2017 1244

“Despite the progress in Internet of Things (IoT) research, a

general software engineering approach for systematic

development of IoT systems and applications is still missing. A

synthesis of the state of the art in the area can help frame the

key abstractions related to such development.”

Franco Zambonelli, Key Abstractions for IoT-Oriented

Software Engineering, IEEE Software, January 2017.1007

1007DOI: 10.1109/MS.2017.3

http://doi.ieeecomputersociety.org/10.1109/MS.2017.3

2017 1245

“Mission-critical Internet of Things (MC-IoT) systems involve

heterogeneous things from both the digital and physical

worlds. They run applications whose failure might cause

significant and possibly dramatic consequences, such as

interruption of public services, significant business losses,

and deterioration of enterprise operations. These applications

require not only high availability, reliability, safety, and

security but also regulatory compliance, scalability, and

serviceability. At the same time, they’re exposed to various

facets of uncertainty, spanning from software and hardware

variability to mission planning and execution in possibly

unforeseeable environments. Model-driven engineering can

potentially meet these challenges and better enable the

adoption of MC-IoT systems.”

2017 1246

Federico Ciccozzi, Ivica Crnkovic, Davide Di Ruscio, Ivano

Malavolta, Patrizio Pelliccione, Romina Spalazzese,

Model-Driven Engineering for Mission-Critical IoT Systems,

IEEE Software, January 2017.1008

1008DOI: 10.1109/MS.2017.1

http://doi.ieeecomputersociety.org/10.1109/MS.2017.1

2017 1247

“A roadmap from today’s cloud-centric, data-centric IoT

systems to the Programmable World highlights the technical

challenges that deserve to be part of developer education and

deserve deeper investigation beyond those IoT topics that

receive the most attention today.”

Antero Taivalsaari, Tommi Mikkonen, A Roadmap to the

Programmable World: Software Challenges in the IoT Era,

IEEE Software, January 2017.1009

1009DOI: 10.1109/MS.2017.26

http://doi.ieeecomputersociety.org/10.1109/MS.2017.26

2017 1248

“Microservices are in many ways a best-practice approach

for realizing SOA.”

Cesare Pautasso, Olaf Zimmermann, Mike Amundsen, James

Lewis, Nicolai Josuttis, Microservices in Practice, Part 1:

Reality Check and Service Design, IEEE Software, January

2017.1010

1010DOI: 10.1109/MS.2017.24

http://doi.ieeecomputersociety.org/10.1109/MS.2017.24

2017 1249

“Just as physicists infer dark matter’s presence on the basis of

its gravitational effects on visible matter, we can conceptualize

a ‘darkitecture’ that outlines visible software architectures.”

Balaji Prasad, Darkitecture: The Reality Skirted by

Architecture, IEEE Software, January 2017.1011

1011DOI: 10.1109/MS.2017.7

http://doi.ieeecomputersociety.org/10.1109/MS.2017.7

2017 1250

“Computer games are rich, complex, and often large-scale

software applications. They’re a significant, interesting, and

often compelling domain for innovative research in software

engineering techniques and technologies. Computer games

are progressively changing the everyday world in many

positive ways. Game developers, whether focusing on

entertainment market opportunities or game-based

applications in nonentertainment domains such as education,

healthcare, defense, or scientific research (that is, serious

games), thus share a common interest in how best to engineer

game software.”

Walt Scacchi, Practices and Technologies in Computer Game

Software Engineering, IEEE Software, January 2017.1012

1012DOI: 10.1109/MS.2017.20

http://doi.ieeecomputersociety.org/10.1109/MS.2017.20

2017 1251

“‘What is Infrastructure as code? There are a lot of ways to

answer that. One is that automation is the “CALM” of DevOps.

CALM stands for culture, automation, learning, and

measurement. Infrastructure as Code is about the automation

piece. That’s how people who have been doing DevOps for a

while approach it, using tools like Chef, Puppet, Ansible, and

SaltStack. The philosophy behind this is that infrastructure

has become like data: the physical layer has been abstracted.

It’s become software, as opposed to being a physical thing.

We can use infrastructure tools the same way we use

software. We can bring in best practices from software

development, such as continuous integration CI, test-driven

development, and continuous delivery CD version control

systems, and apply them to managing our infrastructure. “

2017 1252

Sven Johann, Kief Morris on Infrastructure as Code, IEEE

Software, January 2017.1013

1013DOI: 10.1109/MS.2017.13

http://doi.ieeecomputersociety.org/10.1109/MS.2017.13

2018

2018 1254

2018 1255

“Although intensive research on software analytics has been

going on for nearly a decade, a repeated complaint in software

analytics is that industrial practitioners find it hard to apply

the results generated from data science.”

Ye Yang, Davide Falessi, Tim Menzies and Jairus Hihn,

Actionable Analytics for Software Engineering, IEEE

Software, January 2018.1014

1014DOI: https://doi.ieeecomputersociety.org/10.1109/MS.2017.4541039

https://doi.ieeecomputersociety.org/10.1109/MS.2017.4541039

	Table of Contents
	Foreword
	1984
	1985
	1986
	1987
	1988
	1989
	1990
	1991
	1992
	1993
	1994
	1995
	1996
	1997
	1998
	1999
	2000
	2001
	2002
	2003
	2004
	2005
	2006
	2007
	2008
	2009
	2010
	2011
	2012
	2013
	2014
	2015
	2016
	2017
	2018

